Skip to main content

Diagnosis of Active Systems with Abstract Observability

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 238))

  • 466 Accesses

Abstract

Active systems (ASs) are a special class of (asynchronous) discrete-event systems (DESs). An AS is represented by a network of components, where each component is modeled as a communicating automaton. Diagnosing a DES amounts to finding out possible faults based on the DES model and a sequence of observations gathered while the DES is being operated. This is why the diagnosis engine needs to know what is observable in the behavior of the DES and what is not. The notion of observability serves this purpose. In the literature, defining the observability of a DES boils down to qualifying the state transitions of components either as observable or unobservable, where each observable transition manifests itself as an observation. Still, looking at the way humans observe reality, typically by associating a collection of events with a single, abstract perception, the state-of-the-art notion of DES observability appears somewhat narrow. This paper presents, a generalized notion of observability, where an observation is abstract rather than concrete since it is associated with a DES behavioral scenario rather than a single component transition. To support the online diagnosis engine, knowledge compilation is performed offline. The outcome is a set of data structures, called watchers, which allow for the tracking of abstract observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of large active systems. Artifi. Intell. 110(1), 135–183 (1999). https://doi.org/10.1016/S0004-3702(99)00019-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Basile, F.: Overview of fault diagnosis methods based on Petri net models. In: Proceedings of the 2014 European Control Conference, ECC 2014, pp. 2636–2642 (2014). https://doi.org/10.1109/ECC.2014.6862631

  3. Basilio, J., Lafortune, S.: Robust codiagnosability of discrete event systems. In: Proceedings of the American Control Conference, pp. 2202–2209. IEEE (2009). https://doi.org/10.1109/ACC.2009.5160208

  4. Bertoglio, N., Lamperti, G., Zanella, M.: Intelligent diagnosis of discrete-event systems with preprocessing of critical scenarios. In: Czarnowski, I., Howlett, R., Jain, L. (eds.) Intelligent Decision Technologies 2019, Smart Innovation, Systems and Technologies, vol. 142, pp. 109–121. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-8311-3_10

  5. Bertoglio, N., Lamperti, G., Zanella, M., Zhao, X.: Diagnosis of temporal faults in discrete-event systems. In: Giacomo, G.D., Catala, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J. (eds.) 24th European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 632–639. IOS Press, Amsterdam (2020). https://doi.org/10.3233/FAIA200148

  6. Bertoglio, N., Lamperti, G., Zanella, M., Zhao, X.: Explanatory diagnosis of discrete-event systems with temporal information and smart knowledge-compilation. In: Calvanese, D., Erdem, E., Thielsher, M. (eds.) Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 130–140. IJCAI Organization (2020). https://doi.org/10.24963/kr.2020/14

  7. Bertoglio, N., Lamperti, G., Zanella, M., Zhao, X.: Explanatory monitoring of discrete-event systems. In: Czarnowski, I., Howlett, R., Jain, L. (eds.) Intelligent Decision Technologies 2020, Smart Innovation, Systems and Technologies, vol. 193, pp. 63–77. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5925-9_6

  8. Bertoglio, N., Lamperti, G., Zanella, M., Zhao, X.: Temporal-fault diagnosis for critical-decision making in discrete-event systems. In: Cristani, M., Toro, C., Zanni-Merk, C., Howlett, R., Jain, L. (eds.) Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 24th International Conference KES2020, Procedia Computer Science, vol. 176, pp. 521–530. Elsevier (2020). https://doi.org/10.1016/j.procs.2020.08.054

  9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabasino, M.P., Giua, A., Seatzu, C.: Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica 46, 1531–1539 (2010)

    Article  MathSciNet  Google Scholar 

  11. Carvalho, L., Basilio, J., Moreira, M., Bermeo, L.: Diagnosability of intermittent sensor faults in discrete event systems. In: Proceedings of the American Control Conference, pp. 929–934 (2013). https://doi.org/10.1109/ACC.2013.6579955

  12. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer, New York (2008)

    Book  Google Scholar 

  13. Cong, X., Fanti, M., Mangini, A., Li, Z.: Decentralized diagnosis by Petri nets and integer linear programming. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1689–1700 (2018)

    Article  Google Scholar 

  14. Debouk, R., Lafortune, S., Teneketzis, D.: Coordinated decentralized protocols for failure diagnosis of discrete-event systems. J. Discrete Event Dyn. Syst. Theory Appl. 10(1–2), 33–86 (2000)

    Article  MathSciNet  Google Scholar 

  15. Grastien, A.: Symbolic testing of diagnosability. In: Frisk, E., Nyberg, M., Krysander, M., Aslund, J.(eds.) Proceedings of the 20th International Workshop on Principles of Diagnosis, pp. 131–138 (2009)

    Google Scholar 

  16. Grastien, A., Cordier, M., Largouët, C.: Incremental diagnosis of discrete-event systems. In: Nineteenth International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 1564–1565. Edinburgh, UK (2005)

    Google Scholar 

  17. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis. Morgan Kaufmann, San Mateo, CA (1992)

    Google Scholar 

  18. Jéron, T., Marchand, H., Pinchinat, S., Cordier, M.: Supervision patterns in discrete event systems diagnosis. In: Workshop on Discrete Event Systems (WODES 2006), pp. 262–268. IEEE Computer Society, Ann Arbor, MI (2006)

    Google Scholar 

  19. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing diagnosability of discrete event systems. IEEE Trans. Autom. Control 46(8), 1318–1321 (2001)

    Article  MathSciNet  Google Scholar 

  20. Jiroveanu, G., Boel, R., Bordbar, B.: On-line monitoring of large Petri net models under partial observation. J. Discrete Event Dyn. Syst. 18, 323–354 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kan John, P., Grastien, A.: Local consistency and junction tree for diagnosis of discrete-event systems. In: Eighteenth European Conference on Artificial Intelligence (ECAI 2008), pp. 209–213. IOS Press, Amsterdam, Patras, Greece (2008)

    Google Scholar 

  22. Kwong, R., Yonge-Mallo, D.: Fault diagnosis in discrete-event systems: incomplete models and learning. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 41(1), 118–130 (2011)

    Article  Google Scholar 

  23. Lamperti, G., Quarenghi, G.: Intelligent monitoring of complex discrete-event systems. In: Czarnowski, I., Caballero, A., Howlett, R., Jai, L. (eds.) Intelligent Decision Technologies 2016, Smart Innovation, Systems and Technologies, vol. 56, pp. 215–229. Springer International Publishing Switzerland (2016). https://doi.org/10.1007/978-3-319-39630-9_18

  24. Lamperti, G., Zanella, M.: Diagnosis of discrete-event systems from uncertain temporal observations. Artif. Intell. 137(1–2), 91–163 (2002). https://doi.org/10.1016/S0004-3702(02)00123-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Lamperti, G., Zanella, M.: Flexible diagnosis of discrete-event systems by similarity-based reasoning techniques. Artif. Intell. 170(3), 232–297 (2006). https://doi.org/10.1016/j.artint.2005.08.002

  26. Lamperti, G., Zanella, M.: Context-sensitive diagnosis of discrete-event systems. In: Walsh, T. (ed.) Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI 2011), vol. 2, pp. 969–975. AAAI Press, Barcelona, Spain (2011)

    Google Scholar 

  27. Lamperti, G., Zanella, M., Zhao, X.: Abductive diagnosis of complex active systems with compiled knowledge. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference (KR 2018), pp. 464–473. AAAI Press, Tempe, Arizona (2018)

    Google Scholar 

  28. Lamperti, G., Zanella, M., Zhao, X.: Introduction to Diagnosis of Active Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92733-6

  29. Lamperti, G., Zanella, M., Zhao, X.: Diagnosis of deep discrete-event systems. J. Artif. Intell. Res. 69, 1473–1532 (2020). https://doi.org/10.1613/jair.1.12171

    Article  MathSciNet  MATH  Google Scholar 

  30. Lamperti, G., Zhao, X.: Diagnosis of active systems by semantic patterns. IEEE Trans. Syst. Man Cybern. Syst. 44(8), 1028–1043 (2014). https://doi.org/10.1109/TSMC.2013.2296277

    Article  Google Scholar 

  31. Li, B., Khlif-Bouassida, M., Toguyéni, A.: Reduction rules for diagnosability analysis of complex systems modeled by labeled Petri nets. IEEE Trans. Autom. Sci. Eng. (2019). https://doi.org/10.1109/TASE.2019.2933230

    Article  MATH  Google Scholar 

  32. McIlraith, S.: Explanatory diagnosis: conjecturing actions to explain observations. In: Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 167–177. Morgan Kaufmann, S. Francisco, CA, Trento, I (1998)

    Google Scholar 

  33. Pencolé, Y.: Diagnosability analysis of distributed discrete event systems. In: Sixteenth European Conference on Artificial Intelligence (ECAI 2004), pp. 43–47. Valencia, Spain (2004)

    Google Scholar 

  34. Pencolé, Y., Cordier, M.: A formal framework for the decentralized diagnosis of large scale discrete event systems and its application to telecommunication networks. Artif. Intell. 164(1–2), 121–170 (2005)

    Google Scholar 

  35. Pencolé, Y., Steinbauer, G., Mühlbacher, C., Travé-Massuyès, L.: Diagnosing discrete event systems using nominal models only. In: Zanella, M., Pill, I., Cimatti, A. (eds.) 28th International Workshop on Principles of Diagnosis (DX’17), vol. 4, pp. 169–183. Kalpa Publications in Computing (2018). https://doi.org/10.29007/1d2x

  36. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  37. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Diagnosability of discrete-event systems. IEEE Trans. Autom. Control 40(9), 1555–1575 (1995)

    Article  MathSciNet  Google Scholar 

  38. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Failure diagnosis using discrete-event models. IEEE Trans. Control Syst. Technol. 4(2), 105–124 (1996)

    Article  Google Scholar 

  39. Struss, P.: Fundamentals of model-based diagnosis of dynamic systems. In: Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 480–485. Nagoya, Japan (1997)

    Google Scholar 

  40. Su, X., Zanella, M., Grastien, A.: Diagnosability of discrete-event systems with uncertain observations. In: 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1265–1571. New York, NY (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (grant number 61972360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Lamperti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lamperti, G., Zanella, M., Zhao, X. (2021). Diagnosis of Active Systems with Abstract Observability. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2765-1_42

Download citation

Publish with us

Policies and ethics