Abstract
This work treats multi-cell (M-C) multi-user (M-U) massive MIMO (M-MIMO) systems taking into consideration pilot contamination (PC), where Rayleigh fading channels are correlated in the spatial domain. An appropriate exponential correlation (EC) is using as an approximation model for uniform-linear arrays (Un-LA). The statistics of minimum mean square error (MMSE), element-wise MMSE (EW-MMSE), approximate MMSE (Approx.MMSE), and least-squares (LS) estimators are evaluated and analyzed. The Approx.MMSE estimator uses an imperfect covariance matrix (CM), which relies on sample CM to estimate a true CM provided by the MMSE. Analytical NMSE formulas for idealistic and realistic CMs are presented and interpreted. An analytical normalized mean square error (NMSE) formula is also given for EW-MMSE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)
Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)
Khansefid, A., Minn, H.: On channel estimation for massive MIMO with pilot contamination. IEEE Commun. Lett. 19(9), 1660–1663 (2015)
De Figueiredo, F.A.P., Cardoso, F.A.C.M., Moerman, I., Fraidenraich, G.: Channel estimation for massive MIMO TDD systems assuming pilot contamination and frequency selective fading. IEEE Access 5, 17733–17741 (2017)
De Figueiredo, F.A.P., Cardoso, F.A.C.M., Moerman, I., Fraidenraich, G.: Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–10 (2018)
Mandal, B.K., Pramanik, A.: Channel estimation in massive MIMO with spatial channel correlation matrix. In: Intelligent Computing Techniques for Smart Energy Systems, pp. 377–385. Springer (2020)
de Figueiredo, F.A.P., Lemes, D.A.M., Dias, C.F., Fraidenraich, G.: Massive MIMO channel estimation considering pilot contamination and spatially correlated channels. Electron. Lett. 56(8), 410–413 (2020)
Björnson, E., Sanguinetti, L., Debbah, M.: Massive MIMO with imperfect channel covariance information. In: 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 974–978. IEEE (2016)
Filippou, M., Gesbert, D., Yin, H.: Decontaminating pilots in cognitive massive MIMO networks. In: 2012 International Symposium on Wireless Communication Systems (ISWCS), pp. 816–820. IEEE (2012)
Adhikary, A., Nam, J., Ahn, J.-Y., Caire, G.: Joint spatial division and multiplexing-the large-scale array regime. IEEE Trans. Inf. Theory 59(10), 6441–6463 (2013)
Yin, H., Gesbert, D., Filippou, M., Liu, Y.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2013)
Gao, X., Edfors, O., Rusek, F., Tufvesson, F.: Massive MIMO performance evaluation based on measured propagation data. IEEE Trans. Wirel. Commun. 14(7), 3899–3911 (2015)
Özdogan, Ö., Björnson, E., Larsson, E.G.: Massive MIMO with spatially correlated Rician fading channels. IEEE Trans. Commun. 67(5), 3234–3250 (2019)
Sanguinetti, L., Björnson, E., Hoydis, J.: Toward massive MIMO 2.0: understanding spatial correlation, interference suppression, and pilot contamination. IEEE Trans. Commun. 68(1), 232–257 (2019)
Forenza, A., Love, D.J., Heath, R.W.: Simplified spatial correlation models for clustered MIMO channels with different array configurations. IEEE Trans. Veh. Technol. 56(4), 1924–1934 (2007)
Adhikary, A., Ashikhmin, A.: Uplink massive MIMOfor channels with spatial correlation. In 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)
Björnson, E., Hoydis, Jakob, Sanguinetti, L.: Massive MIMO has unlimited capacity. IEEE Trans. Wirel. Commun. 17(1), 574–590 (2017)
Sengijpta, S.K.: Fundamentals of Statistical Signal Processing: Estimation Theory (1995)
Shariati, N., Björnson, E., Bengtsson, M., Debbah, M.: Low-complexity polynomial channel estimation in large-scale MIMO with arbitrary statistics. IEEE J. Sel. Topics Signal Process. 8(5), 815–830 (2014)
Björnson, E., Hoydis, J., Sanguinetti, L.: Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends Signal Process. 11(3–4), 154–655 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Boulouird, M., Amadid, J., Riadi, A., Hassani, M.M. (2022). Channel Estimation in Massive MIMO Systems for Spatially Correlated Channels with Pilot Contamination. In: Ben Ahmed, M., Teodorescu, HN.L., Mazri, T., Subashini, P., Boudhir, A.A. (eds) Networking, Intelligent Systems and Security. Smart Innovation, Systems and Technologies, vol 237. Springer, Singapore. https://doi.org/10.1007/978-981-16-3637-0_11
Download citation
DOI: https://doi.org/10.1007/978-981-16-3637-0_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-3636-3
Online ISBN: 978-981-16-3637-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)