Skip to main content

On Channel Estimation of Uplink TDD Massive MIMO Systems Through Different Pilot Structures

  • Conference paper
  • First Online:
Networking, Intelligent Systems and Security

Abstract

This work is considered as a comparative study in which the quality of channel estimation (CE) in massive multiple-input multiple-output (M-MIMO) systems is studied by operating at Uplink (UL) phase according to a time division duplex (TDD) scheme using commonly known channel estimators existing in the literature. The least squares (LS) and minimum mean square error (MMSE) channel estimators are investigated with three categories of pilots, namely regular pilots (RPs), time-superimposed (or superimposed ) pilots and staggered pilots (StP). Two patterns of frequency reuse (FR) per category are used. The simulation results showed that by increasing the number of BS antennas with a fixed number of symbols dedicated to the UL phase and vice versa, the normalized mean square error (NMSE) of the LS and MMSE estimators using the superimposed pilot (SuP) or StP is asymptotically approaches the NMSE of the LS and MMSE estimators using the RP, respectively. An asymptotic behavior is studied for two different FR scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five disruptive technology directions for 5g. IEEE Commun. Mag. 52(2), 74–80 (2014)

    Google Scholar 

  2. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., et al.: Scenarios for 5g mobile and wireless communications: the vision of the metis project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    Article  Google Scholar 

  3. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Google Scholar 

  4. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process. 8(5), 742–758 (2014)

    Google Scholar 

  5. Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2012)

    Google Scholar 

  6. Hoydis, J., Ten Brink, S., Debbah, M.: Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)

    Article  Google Scholar 

  7. Yang, H., Marzetta, T.L.: Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun. 31(2), 172–179 (2013)

    Google Scholar 

  8. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Google Scholar 

  9. Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)

    Google Scholar 

  10. Paulraj, A.J., Ng, B.C.: Space-time modems for wireless personal communications. IEEE Pers. Commun. 5(1), 36–48 (1998)

    Google Scholar 

  11. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Google Scholar 

  12. Yin, H., Gesbert, D., Filippou, M., Liu, Y.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2013)

    Article  Google Scholar 

  13. Ngo, H.Q., Larsson, E.G., EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3249–3252. IEEE (2012)

    Google Scholar 

  14. Guo, K., Guo, Y., Ascheid, G.: On the performance of EVD-based channel estimations in mu-massive-MIMO systems. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1376–1380. IEEE (2013)

    Google Scholar 

  15. Khansefid, A., Minn, H.: On channel estimation for massive MIMO with pilot contamination. IEEE Commun. Lett. 19(9), 1660–1663 (2015)

    Article  Google Scholar 

  16. de Figueiredo, F.A.P., Cardoso, F.A.C.M., Moerman, I., Fraidenraich, G.: Channel estimation for massive MIMO TDD systems assuming pilot contamination and flat fading. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–10 (2018)

    Google Scholar 

  17. de Figueiredo, F.A.P., Cardoso, F.A.C.M., Moerman, I., Fraidenraich, G.: Channel estimation for massive MIMO TDD systems assuming pilot contamination and frequency selective fading. IEEE Access 5, 17733–17741 (2017)

    Google Scholar 

  18. Guo, C., Li, J., Zhang, H.: On superimposed pilot for channel estimation in massive MIMO uplink. Phys. Commun. 25, 483–491 (2017)

    Article  Google Scholar 

  19. Upadhya, K., Vorobyov, S.A., Vehkapera, M.: Downlink performance of superimposed pilots in massive MIMO systems in the presence of pilot contamination. In: 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 665–669. IEEE (2016)

    Google Scholar 

  20. Upadhya, K., Vorobyov, S.A., Vehkapera, M.: Superimposed pilots are superior for mitigating pilot contamination in massive MIMO. IEEE Trans. Signal Process. 65(11), 2917–2932 (2017)

    Google Scholar 

  21. Zhang, H., Pan, D., Cui, H., Gao, F.: Superimposed training for channel estimation of OFDM modulated amplify-and-forward relay networks. Science China Inf. Sci. 56(10), 1–12 (2013)

    MathSciNet  Google Scholar 

  22. Li, J., Zhang, H., Li, D., Chen, H.: On the performance of wireless-energy-transfer-enabled massive MIMO systems with superimposed pilot-aided channel estimation. IEEE Access 3, 2014–2027 (2015)

    Article  Google Scholar 

  23. Zhou, G.T., Viberg, M., McKelvey, T.: A first-order statistical method for channel estimation. IEEE Signal Process. Lett. 10(3), 57–60 (2003)

    Google Scholar 

  24. Huang, W.-C., Li, C.-P., Li, H.-J.: On the power allocation and system capacity of OFDM systems using superimposed training schemes. IEEE Trans. Veh. Technol. 58(4), 1731–1740 (2008)

    Article  Google Scholar 

  25. Dai, X., Zhang, H., Li, D.: Linearly time-varying channel estimation for MIMO/OFDM systems using superimposed training. IEEE Trans. Commun. 58(2), 681–693 (2010)

    Article  Google Scholar 

  26. Zhang, H., Gao, S., Li, D., Chen, H., Yang, L.: On superimposed pilot for channel estimation in multicell multiuser MIMO uplink: large system analysis. IEEE Trans. Veh. Technol. 65(3), 1492–1505 (2015)

    Article  Google Scholar 

  27. Upadhya, K., Vorobyov, S.A., Vehkapera, M.: Superimposed pilots: an alternative pilot structure to mitigate pilot contamination in massive MIMO. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3366–3370. IEEE (2016)

    Google Scholar 

  28. Li, F., Wang, H., Ying, M., Zhang, W., Lu, J.: Channel estimations based on superimposed pilots for massive MIMO uplink systems. In: 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–5. IEEE (2016)

    Google Scholar 

  29. Die, H., He, L., Wang, X.: Semi-blind pilot decontamination for massive MIMO systems. IEEE Trans. Wirel. Commun. 15(1), 525–536 (2015)

    Google Scholar 

  30. Wen, C.-K., Jin, S., Wong, K.-K., Chen, J.-C., Ting, P.: Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning. IEEE Trans. Wirel. Commun. 14(3), 1356–1368 (2014)

    Article  Google Scholar 

  31. Björnson, E., Hoydis, J., Kountouris, M., Debbah, M.: Massive MIMO systems with non-ideal hardware: Energy efficiency, estimation, and capacity limits. IEEE Trans. Inf. Theory 60(11), 7112–7139 (2014)

    Article  MathSciNet  Google Scholar 

  32. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soci. Lond. Ser. Containing Pap. Math. Phys. Char. 222(594–604), 309–368 (1922)

    Google Scholar 

  33. Kong, D., Daiming, Q., Luo, K., Jiang, T.: Channel estimation under staggered frame structure for massive MIMO system. IEEE Trans. Wirel. Commun. 15(2), 1469–1479 (2015)

    Article  Google Scholar 

  34. Mahyiddin, W.A.W.M., Martin, P.A., Smith, P.J.: Performance of synchronized and unsynchronized pilots in finite massive MIMO systems. IEEE Trans. Wirel. Commun. 14(12), 6763–6776 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Boulouird .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amadid, J., Boulouird, M., Riadi, A., Hassani, M.M. (2022). On Channel Estimation of Uplink TDD Massive MIMO Systems Through Different Pilot Structures. In: Ben Ahmed, M., Teodorescu, HN.L., Mazri, T., Subashini, P., Boudhir, A.A. (eds) Networking, Intelligent Systems and Security. Smart Innovation, Systems and Technologies, vol 237. Springer, Singapore. https://doi.org/10.1007/978-981-16-3637-0_12

Download citation

Publish with us

Policies and ethics