Skip to main content

Visualization of Continuous and Pulsed Ultrasonic Propagation in Water

  • Conference paper
  • First Online:
Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) (MICAD 2021)

Abstract

Imaging the distribution and propagation of sound fields in water is important for applications of ultrasound in water. In this paper, a stroboscopic polarization parameter imaging method was implemented to visualize and quantify ultrasonic wave propagation in water. A k-space numerical method was used to simulate the propagation of the ultrasonic wave and verify the relationship between the pressure distributions of ultrasonic wave and the optical parametric images. Ultrasonic wavefield generated by continuous sinusoidal and pulsed signals were visualized experimentally. The results demonstrated high sensitivity and spatial resolution for visualization of the ultrasound field distribution in water.

L. Zhi and H. Zhang contributed equally to the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ni, Z.L., Wang, X.X., Li, S., Ye, F.X.: Mechanical strength enhancement of ultrasonic metal welded Cu/Cu joint by Cu nanoparticles interlayer. J. Manuf. Process. 38, 88–92 (2019)

    Article  Google Scholar 

  2. Chatillon, S., et al.: Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer. Ultrasonics 38(1–8), 131–134 (2000)

    Article  Google Scholar 

  3. Sumi, C.: Ultrasonic diagnosis and treatment equipment using lateral modulation. Jpn. J. Med. Ultrason. 35, S277 (2008)

    Google Scholar 

  4. Weber, J., Beard, P.C., Bohndiek, S.E.: Contrast agents for molecular photoacoustic imaging. Nat. Methods 13(8), 639–650 (2016)

    Article  Google Scholar 

  5. Anonymous: Ultrasonic cleaning technology helps SoCalGas achieve greater efficiency. Pipeline Gas J. 242(12), 73–74 (2015)

    Google Scholar 

  6. Lippert, T., Bandelin, J., Schlederer, F., Drewes, Jörg. E., Koch, K.: Impact of ultrasound-induced cavitation on the fluid dynamics of water and sewage sludge in ultrasonic flatbed reactors. Ultrason. Sonochem. 55, 217–222 (2019)

    Article  Google Scholar 

  7. Ivanov, A.V., et al.: Properties of metal oxide nanoparticles prepared by plasma discharge in water with ultrasonic cavitation. Int. J. Nanotechnol. 14(7/8), 618–626 (2017)

    Article  Google Scholar 

  8. Zanki, A.K., et al.: Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. IOP Conf. Ser.: Mater. Sci. Eng. 888(1), 012033 (2020)

    Article  Google Scholar 

  9. Zhou, J., Xu, R., Jiao, H., Bao, J.D., Long, Y.H.: Study on the mechanism of ultrasonic-assisted water confined laser micromachining of silicon. Optics Lasers Eng. 132, 106118 (2020)

    Article  Google Scholar 

  10. Cui, F.L., Ji, W.: Dynamic simulation of ultrasonic cavitation bubble and analysis of its influencing factors. Ed. Off. Trans. Chin. Soc. Agric. Eng. 29(17), 24–29 (2013)

    Google Scholar 

  11. Miao, R., Yang, Z., Zhu, J., Shen, C.: Visualization of low-frequency liquid surface acoustic waves by means of optical diffraction. Appl. Phys. Lett. 80(17), 3033–3035 (2002)

    Article  Google Scholar 

  12. Kakue, T., et al.: High-speed phase imaging by parallel phase-shifting digital holography. Opt. Lett. 36(21), 4131–4133 (2011)

    Article  Google Scholar 

  13. Xiong, J., Xu, X., Glorieux, C., Matsuda, L., Cheng, O.: Imaging of transient surface acoustic waves by full-field photorefractive interferometry. Rev. Sci. Instrum. 86(5), 053107 (2015)

    Article  Google Scholar 

  14. Kimmo, K., Lauri, L., Igor, S., Steffen, N., Matti, K., Hanne, L.: Characterization of surface acoustic waves by stroboscopic white-light interferometry. Opt. Express 23(8), 9690–9695 (2015)

    Article  Google Scholar 

  15. Hargather, M.J., Settles, G.S., Madalis, M.J.: Schlieren imaging of loud sounds and weak shock waves in air near the limit of visibility. Shock Waves 20(1), 9–17 (2010)

    Article  Google Scholar 

  16. Chitanont, N., Yaginuma, K., Yatabe, K., Oikawa, Y.: Visualization of sound field by means of Schlieren method with spatio-temporal filtering. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 509–513 (2015)

    Google Scholar 

  17. Glorieux, C., Beers, J.D., Bentefour, E.H., Van, dR.K., Nelson, K.A.: Phase mask-based interferometer: operation principle, performance, and application to thermoelastic phenomena. Rev. Sci. Instrum. 75(9), 2906–2920 (2004)

    Article  Google Scholar 

  18. Washimori, S., Mihara, T., Tashiro, H.: Investigation of the sound field of phased array using the photoelastic visualization technique and the accurate FEM. Mater. Trans. 53(4), 631–635 (2012)

    Article  Google Scholar 

  19. Yamamoto, K., Sakiyama, T., Izumiya, H.: Visualization of acoustic evanescent waves by the stroboscopic photoelastic method. Phys. Procedia 70, 716–720 (2015)

    Article  Google Scholar 

  20. Nam, Y.H., Lee, S.S.: A quantitative evaluation of elastic wave in solid by stroboscopic photoelasticity. J. Sound Vib. 259(5), 1199–1207 (2003)

    Article  Google Scholar 

  21. Date, K., Udagawa, Y.: Visualization of ultrasonic waves in a solid by stroboscopic photoelasticity and image processing techniques. Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA, pp. 1755–1762 (1989)

    Chapter  Google Scholar 

  22. Liu, X., et al.: Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging. Optics Express 22, 020446 (2014)

    Article  Google Scholar 

  23. Liu, W., Xiong, J., Zhang, H., Liu, X., Liu, G., Zhao, H.: Characterization of Komagataeibacter xylinus by a polarization modulation imaging method. J. Phys. D: Appl. Phys. 53, 125403 (2019)

    Article  Google Scholar 

  24. Liu, G.S., et al.: Visualization of ultrasonic wave field by stroboscopic polarization selective imaging. Opt. Express 28, 27096 (2020)

    Article  Google Scholar 

  25. Cao, Y., et al.: Sensing of ultrasonic fields based on polarization parametric indirect microscopic imaging. Chin. Opt. Lett. 17(4), 93–98 (2019)

    Google Scholar 

  26. Treeby, B.E., Cox, B.T.: k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Major Scientific Instruments and Equipment Development Project under Grant No. 61827814, National Key Research and Development Program of China under Grant No. 2017YFF0107100), Beijing Natural Science Foundation under Grant No. Z190018, the Fundamental Research Funds for the Central Universities under Grant No. 30920010011, the Postdoctoral Foundation of Jiangsu Province under Grant No.2020Z331, and the Ministry of Education collaborative project B17023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichuan Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhi, L. et al. (2022). Visualization of Continuous and Pulsed Ultrasonic Propagation in Water. In: Su, R., Zhang, YD., Liu, H. (eds) Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021). MICAD 2021. Lecture Notes in Electrical Engineering, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-16-3880-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3880-0_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3879-4

  • Online ISBN: 978-981-16-3880-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics