Skip to main content

A Data Enhancement Method for Gene Expression Profile Based on Improved WGAN-GP

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Abstract

A large number of gene expression profile datasets mainly exist in the fields of biological information and gene microarrays. Traditional classification approaches are hard to gain a good performance in the gene expression profile data, due to the characteristics of high dimensionality and small sample size of gene expression profile datasets. In fact, as a data a augmentation technology, Wasserstein generative adversarial network based on gradient penalty (WGAN-GP) with conditional generative adversarial network (CWGAN-GP) can generate specified label samples in a simple fully connected network and is beneficial to improve the performance of the classification model. However, this data enhancement method generates the samples with low diversity and distribution uncertainty and decrease the classification accuracy. Therefore, this paper proposes a conditional Wasserstein generative adversarial network based on the gene expression datasets (Gene-CWGAN). Gene-CWGAN adopts a datasets division strategy based on the data distribution to help the model maintain the distribution of realistic samples. Subsequently, Gene-CWGAN enhances the diversity and quality of generated samples by removing the activation function of the output layer and adding constraint penalty items. Finally, Gene-CWGAN is compared with CGAN and CWGAN-GP on Colon, Leukemia2 and SRBCT verified to effectively improve the diversity and distribution stability of generated samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shah, S.H., Iqbal, M.J., Ahmad, I., Khan, S., Rodrigues, J.J.P.C.: Optimized gene selection and classification of cancer from microarray gene expression data using deep learning. Neural Comput. Appl. 1–12 (2020)

    Google Scholar 

  2. Aduviri, R., Matos, D., Villanueva, E.: Feature selection algorithm recommendation for gene expression data through gradient boosting and neural network metamodels. In: Proceedings of 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2726–2728 (2018)

    Google Scholar 

  3. Yuan, J., Li, K.: The fault diagnosis model for railway system based on an improved feature selection method. In: Proceedings of 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), pp. 1–4 (2019)

    Google Scholar 

  4. Fang, F., Lv, Q.Q., Wang, M.S., Yang, X.H., Zhou, Q.G., Zhou, R.: A hybrid feature selection algorithm applied to high-dimensional imbalanced small-sample data classification. In: Proceedings of 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 41–46 (2019)

    Google Scholar 

  5. Roth, H.R., et al.: Anatomy-specific classification of medical images using deep convolutional nets. In: Proceedings of 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 101–104 (2015)

    Google Scholar 

  6. Omer, D.: Classification of heart sounds with re-sampled energy method. In: Proceedings of 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2018)

    Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  8. Mirza, M., Simon, O.: Conditional generative adversarial nets. arXiv e-prints, arXiv:1411.1784 (2014)

  9. Wang, M., et al.: Semi-supervised capsule cGAN for speckle noise reduction in retinal OCT images. IEEE Trans. Med. Imaging 40(4), 1168–1183 (2021)

    Google Scholar 

  10. Chen, L.Y., Liu, Y.F., Xiao, W.D., Wang, Y.X., Xie, H.Y.: SpeakerGAN: speaker identification with conditional generative adversarial network. Neurocomputing 418(22), 211–220 (2020)

    Article  Google Scholar 

  11. Martin, A., Soumith, C., Léon, B.: Wasserstein generative adversarial networks. In: Proceedings of Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 214–223 (2017)

    Google Scholar 

  12. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 5767–5777 (2017)

    Google Scholar 

  13. Gao, X., Deng, F., Yue, X.H.: Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty. Neurocomputing 396, 487–494 (2020)

    Article  Google Scholar 

  14. Luo, Y.Y., Lu, H.G., Jia, N.: Super-resolution algorithm of satellite cloud image based on WGAN-GP. In: Proceedings of 2019 International Conference on Meteorology Observations (ICMO), pp. 1–4 (2019)

    Google Scholar 

  15. Huang, Z.X., et al.: Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented wasserstein generative adversarial networks. Neurocomputing 428(7), 104–115 (2021)

    Article  Google Scholar 

  16. Liu, D.Y., Huang, X.P., Zhan, W.F., Ai, L.F., Zheng, X., Cheng, S.L.: View synthesis-based light field image compression using a generative adversarial network. Inf. Sci. 545(4), 118–131 (2021)

    Article  MathSciNet  Google Scholar 

  17. Jiang, Y.F., Chen, H., Loew, M., Ko, H.: COVID-19 CT image synthesis with a conditional generative adversarial network. IEEE J. Biomed. Health Inform. 25(2), 441–452 (2021)

    Article  Google Scholar 

  18. Zhu, Z.X., Ong, Y.S., Dash, M.: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recogn. 40(11), 3236–3248 (2007)

    Article  Google Scholar 

  19. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant nos. 61976108 and 61572241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S., Han, F. (2021). A Data Enhancement Method for Gene Expression Profile Based on Improved WGAN-GP. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics