Skip to main content

GFU-Net: A Deep Learning Approach for Automatic Metal Crack Detection

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1976 Accesses

Abstract

Crack is a common type of metal indication defects, which brings great hidden dangers to safety of hoisting machinery in use. Automatic metal crack detection methods could be practical in less expensive and high efficiency. In this paper, an encoder-decoder convolutional neural network is proposed, called GFU-Net, which can automatically predict pixel-level crack segmentation by end-to-end method. GFU-Net introduces the guide transformer module on U-Net’s base to strengthen the fusion between corresponding features and applies the Deeply-Supervised Net (DSN), which places features of each convolutional stage under the integrated straight supervision. The experiments show that our work outperforms all other models we test in this article and detects metal cracks from low-contrast images effectively and explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection. IEEE Trans. Intell. Transp. Syst. (2015)

    Google Scholar 

  2. Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: A new minimal path selection algorithm for automatic crack detection on pavement images. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 788–792. IEEE (2014)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

    Google Scholar 

  4. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 11211, pp. 801–818 (2018). https://doi.org/10.1007/978-3-030-01234-2_49

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  10. Damacharla, P., Ringenberg, J., Javaid, A.Y., et al.: TLU-NET: a deep learning approach for automatic steel surface defect detection. arXiv preprint arXiv:2101.06915 (2021)

  11. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  12. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)

    Article  Google Scholar 

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Huang, W., Zhang, N.: A novel road crack detection and identification method using digital image processing techniques. In: 2012 7th International Conference on Computing and Convergence Technology (ICCCT), pp. 397–400. IEEE (2012)

    Google Scholar 

  17. Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36(1), 85–96 (2020)

    Article  MathSciNet  Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  19. Lam, H.F., Yin, T.: Application of two-dimensional spatial wavelet transform in the detection of an obstructed crack on a thin plate. Struct. Control Health Monitor. 19(2), 260–277 (2012)

    Article  Google Scholar 

  20. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)

    Google Scholar 

  21. Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 51(21), 76–81 (2018)

    Google Scholar 

  22. Li, Q., Liu, X.: Novel approach to pavement image segmentation based on neighboring difference histogram method. IEEE Computer Society (2008)

    Google Scholar 

  23. Li, Q., Zou, Q., Zhang, D., Mao, Q.: Fosa: F* seed-growing approach for crack-line detection from pavement images. Image Vis. Comput. 29(12), 861–872 (2011)

    Article  Google Scholar 

  24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  25. Peng, L., Chao, W., Shuangmiao, L., Baocai, F.: Research on crack detection method of airport runway based on twice-threshold segmentation. In: 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), pp. 1716–1720. IEEE (2015)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  27. Shafiee, M.J., Chywl, B., Li, F., Wong, A.: Fast yolo: a fast you only look once system for real-time embedded object detection in video. J. Comput. Vis. Imaging Syst. 3(1) (2017)

    Google Scholar 

  28. Song, L., Lin, W., Yang, Y.G., Zhu, X., Guo, Q., Xi, J.: Weak micro-scratch detection based on deep convolutional neural network. IEEE Access 7, 27547–27554 (2019)

    Article  Google Scholar 

  29. Sun, Y., Salari, E., Chou, E.: Automated pavement distress detection using advanced image processing techniques. In: 2009 IEEE International Conference on Electro/Information Technology, pp. 373–377. IEEE (2009)

    Google Scholar 

  30. Wu, S., Liu, Y.: A segment algorithm for crack detection. In: 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), pp. 674–677. IEEE (2012)

    Google Scholar 

  31. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125(1–3), 3–18 (2015)

    Google Scholar 

  32. Xuan, L., Hong, Z.: An improved canny edge detection algorithm. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 275–278. IEEE (2017)

    Google Scholar 

  33. Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)

    Article  Google Scholar 

  34. Yuan, L., Xu, X.: Adaptive image edge detection algorithm based on canny operator. In: 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), pp. 28–31. IEEE (2015)

    Google Scholar 

  35. Zhang, D., Li, Q., Chen, Y., Cao, M., He, L., Zhang, B.: An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection. Image Vis. Comput. 57, 130–146 (2017)

    Article  Google Scholar 

  36. Zhou, J., Huang, P.S., Chiang, F.P.: Wavelet-based pavement distress detection and evaluation. Opt. Eng. 45(2) (2006)

    Google Scholar 

  37. Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Li, X., Qiu, J., Zhai, X., Wei, M. (2021). GFU-Net: A Deep Learning Approach for Automatic Metal Crack Detection. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics