Abstract
Crack is a common type of metal indication defects, which brings great hidden dangers to safety of hoisting machinery in use. Automatic metal crack detection methods could be practical in less expensive and high efficiency. In this paper, an encoder-decoder convolutional neural network is proposed, called GFU-Net, which can automatically predict pixel-level crack segmentation by end-to-end method. GFU-Net introduces the guide transformer module on U-Net’s base to strengthen the fusion between corresponding features and applies the Deeply-Supervised Net (DSN), which places features of each convolutional stage under the integrated straight supervision. The experiments show that our work outperforms all other models we test in this article and detects metal cracks from low-contrast images effectively and explicitly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: Automatic crack detection on 2d pavement images: An algorithm based on minimal path selection. IEEE Trans. Intell. Transp. Syst. (2015)
Amhaz, R., Chambon, S., Idier, J., Baltazart, V.: A new minimal path selection algorithm for automatic crack detection on pavement images. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 788–792. IEEE (2014)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)
Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 11211, pp. 801–818 (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Damacharla, P., Ringenberg, J., Javaid, A.Y., et al.: TLU-NET: a deep learning approach for automatic steel surface defect detection. arXiv preprint arXiv:2101.06915 (2021)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Huang, W., Zhang, N.: A novel road crack detection and identification method using digital image processing techniques. In: 2012 7th International Conference on Computing and Convergence Technology (ICCCT), pp. 397–400. IEEE (2012)
Huang, Y., Qiu, C., Yuan, K.: Surface defect saliency of magnetic tile. Vis. Comput. 36(1), 85–96 (2020)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Lam, H.F., Yin, T.: Application of two-dimensional spatial wavelet transform in the detection of an obstructed crack on a thin plate. Struct. Control Health Monitor. 19(2), 260–277 (2012)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)
Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 51(21), 76–81 (2018)
Li, Q., Liu, X.: Novel approach to pavement image segmentation based on neighboring difference histogram method. IEEE Computer Society (2008)
Li, Q., Zou, Q., Zhang, D., Mao, Q.: Fosa: F* seed-growing approach for crack-line detection from pavement images. Image Vis. Comput. 29(12), 861–872 (2011)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Peng, L., Chao, W., Shuangmiao, L., Baocai, F.: Research on crack detection method of airport runway based on twice-threshold segmentation. In: 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), pp. 1716–1720. IEEE (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shafiee, M.J., Chywl, B., Li, F., Wong, A.: Fast yolo: a fast you only look once system for real-time embedded object detection in video. J. Comput. Vis. Imaging Syst. 3(1) (2017)
Song, L., Lin, W., Yang, Y.G., Zhu, X., Guo, Q., Xi, J.: Weak micro-scratch detection based on deep convolutional neural network. IEEE Access 7, 27547–27554 (2019)
Sun, Y., Salari, E., Chou, E.: Automated pavement distress detection using advanced image processing techniques. In: 2009 IEEE International Conference on Electro/Information Technology, pp. 373–377. IEEE (2009)
Wu, S., Liu, Y.: A segment algorithm for crack detection. In: 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), pp. 674–677. IEEE (2012)
Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125(1–3), 3–18 (2015)
Xuan, L., Hong, Z.: An improved canny edge detection algorithm. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 275–278. IEEE (2017)
Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., Ling, H.: Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans. Intell. Transp. Syst. 21(4), 1525–1535 (2019)
Yuan, L., Xu, X.: Adaptive image edge detection algorithm based on canny operator. In: 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), pp. 28–31. IEEE (2015)
Zhang, D., Li, Q., Chen, Y., Cao, M., He, L., Zhang, B.: An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection. Image Vis. Comput. 57, 130–146 (2017)
Zhou, J., Huang, P.S., Chiang, F.P.: Wavelet-based pavement distress detection and evaluation. Opt. Eng. 45(2) (2006)
Zou, Q., Cao, Y., Li, Q., Mao, Q., Wang, S.: CrackTree: automatic crack detection from pavement images. Pattern Recogn. Lett. 33(3), 227–238 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Y., Li, X., Qiu, J., Zhai, X., Wei, M. (2021). GFU-Net: A Deep Learning Approach for Automatic Metal Crack Detection. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_27
Download citation
DOI: https://doi.org/10.1007/978-981-16-5188-5_27
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-5187-8
Online ISBN: 978-981-16-5188-5
eBook Packages: Computer ScienceComputer Science (R0)