Skip to main content

An Improved Cluster Load Balancing Scheduling Algorithm

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1875 Accesses

Abstract

People’s lives and work are closely connected to the network, and network activities take up an increasingly large portion of their daily lives, generating large amounts of data. This large amount of data puts tremendous pressure on server clusters, which leads to resource allocation problems. Existing load-balancing algorithms take simple factors into account and do not take into account the server load and the resource consumption of the request. This paper proposes a PSO-GA (Particle Swarm Optimization-Genetic Algorithm) based LVS (Linux Virtual Server) cluster load-balancing scheduling algorithm to quantify the different scheduling options by constructing a resource balance model and an adaptation function. The PSO-GA algorithm is used to solve the adaptation function to obtain the optimal weights. The load balancer schedules requests according to the weights to achieve Linux virtual server cluster load balancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar, P., Kumar, R.: Issues and challenges of load balancing techniques in cloud computing. ACM Comput. Surv. 51(6), 1–35 (2019)

    Article  Google Scholar 

  2. Padole, M., Shah, A.: Comparative study of scheduling algorithms in heterogeneous distributed computing systems. In: Advanced Computing and Communication Technologies, Singapore, pp. 111–122 (2018)

    Google Scholar 

  3. Johnston, W.E.: Rationale and strategy for a 21st century scientific computing architecture: the case for using commercial symmetric multiprocessors as supercomputers. Int. J. High Speed Comput. 9(3), 191–222 (1997)

    Google Scholar 

  4. Weissman, B., van de Laar, E.: SQL Server Big Data Cluster, pp. 11–31. Apress, Germany (2019)

    Book  Google Scholar 

  5. Eric, D.K., Michelle, B., Robert, M.: A scalable HTTP server: the NCSA prototype. Comput. Netw. ISDN Syst. 27(2), 155–164 (1994)

    Article  Google Scholar 

  6. Samolej, S., Szmuc, T.: HTCPNs–based modelling and evaluation of dynamic computer cluster reconfiguration. Lect. Notes Comput. Sci. 7054, 97–108 (2009)

    Article  Google Scholar 

  7. Weizheng, R., Wenkai, C., Yansong, C.: Dynamic balance strategy of high concurrent Web cluster based on docker container. Lop Conf. 466(1), 012011 (2018)

    Google Scholar 

  8. Hai, X., Kim, K., Youn, H.: Dynamic load balancing of software-defined networking based on genetic-ant colony optimization. Sensors 19(2), 311 (2019)

    Google Scholar 

  9. Hsiao, H.C., Hao, L., Chen, S.T., et al.: Load balance with imperfect information in structured peer-to-peer systems. IEEE Trans. Parallel Distrib. Syst. 22(4), 634–649 (2011)

    Google Scholar 

  10. Nick, R.: Load Balancing with HAproxy: Open-Source Technology for Better Scalability, Redundancy and Availability in Your IT Infrastructure, pp. 27–52. Independently published, New York (2016)

    Google Scholar 

  11. Xin, Z., Lili, J., Xin, F.: A dynamic feedback-based load balancing methodology. Int. J. Mod. Educ. Comput. Sci. 12(9), 57–65 (2017)

    Google Scholar 

  12. Aruna, M., Bhanu, D., Karthik, S.: An improved load balanced metaheuristic scheduling in cloud. Clust. Comput. 22(1), 1–9 (2019)

    Article  Google Scholar 

  13. Xiaolong, W., Zhaohui, J.: Load balancing algorithm based on LVS cluster in cloud environment. Comput. Eng. Sci. 38(11), 2172–2176 (2016)

    Google Scholar 

  14. Ruijie, L., Haitao, X., Meng, L.: Resource allocation in edge-computing based wireless networks based on differential game and feedback control. Comput. Materials Continua 64(02), 961–972 (2020)

    Google Scholar 

  15. Jena, U.K., Das, P.K., Kabat, M.R.: Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. J. King Saud Univ.- Comput. Inform. Sci. 32(3), 267–277 (2020)

    Google Scholar 

  16. Ruixia, T., Xiongfeng, Z.: A load balancing strategy based on the combination of static and dynamic. In: Second International Workshop on Database Technology and Applications, pp. 1–4. Proceedings IEEE, Hubei (2010)

    Google Scholar 

  17. Rathore, N.: Performance of hybrid load balancing algorithm in distributed Web server system. Wireless Pers. Commun. 101(4), 1233–1246 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, W., Cui, X. (2021). An Improved Cluster Load Balancing Scheduling Algorithm. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics