Skip to main content

A Traffic Light Control System Based on Reinforcement Learning and Adaptive Timing

  • Conference paper
  • First Online:
Book cover Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

Abstract

Intelligent traffic light control is a key approach to improve the efficiency of transportation system. However, existing intelligent traffic light control methods usually only adjust phase with fixed duration or just adjust duration in a fixed phase circle. In actual scenarios with complicated and dynamic traffic flow, these methods cannot give the optimal phase and duration corresponding to the current situation because of their restricted traffic control mode, which limits the potential to further improve the efficiency of traffic transportation. For this sake, we propose a novel traffic light control system that achieves completely dynamic control. The system is able to efficiently adjust both phase and duration via deep reinforcement learning and adaptive timing. Among them, the reinforcement learning model is specially used for phase decision and the adaptive timing algorithm used for duration decision is designed for effective utilization of green time in each phase. We test our system in different traffic flows and explore the relationship between optimal duration and traffic flow. We also verify the superb performance of our traffic light control system in a whole-day traffic scene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, J., Ma, X., Kosonen, I.: An intelligent control system for traffic lights with simulation-based evaluation. Control Eng. Pract. 58, 24–33 (2017)

    Article  Google Scholar 

  2. Xiong, Z., Sheng, H., Rong, W., Cooper, D.E.: Intelligent transportation systems for smart cities: a progress review. Sci. China Inf. Sci. 55(12), 2908–2914 (2012). https://doi.org/10.1007/s11432-012-4725-1

    Article  Google Scholar 

  3. Miller, A.J.: Settings for fixed-cycle traffic signals. J. Oper. Res. Soc. 14(4), 373–386 (1963)

    Article  Google Scholar 

  4. Cools, S.B., Gershenson, C., D’Hooghe, B.: Self-organizing traffic lights: a realistic simulation. In: Prokopenko, M. (ed.) Advances in Applied Self-Organizing Systems. Advanced Information and Knowledge Processing., pp. 45–55. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5113-5_3

    Chapter  Google Scholar 

  5. Pandit, K., Ghosal, D., Zhang, H.M., Chuah, C.N.: Adaptive traffic signal control with vehicular ad hoc networks. IEEE Trans. Veh. Technol. 62(4), 1459–1471 (2013)

    Article  Google Scholar 

  6. Zhang, R., Ishikawa, A., Wang, W., Striner, B., Tonguz, O.: Using reinforcement learning with partial vehicle detection for intelligent traffic signal control. IEEE Trans. Intell. Transp. Syst., 1–12 (2020). https://doi.org/10.1109/TITS.2019.2958859

  7. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  8. Li, L., Lv, Y., Wang, F.Y.: Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 3(3), 247–254 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wei, H., Zheng, G., Yao, H., Li, Z.: Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2496–2505 (2018)

    Google Scholar 

  10. Wei, H., et al.: Colight: learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1913–1922 (2019)

    Google Scholar 

  11. Hsieh, P.C., Chen, Y.R., Wu, W.H., Hsiung, P.A.: Timing optimization and control for smart traffic. In: 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), pp. 9–16. IEEE (2014)

    Google Scholar 

  12. Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access 7, 84217–84228 (2019)

    Article  Google Scholar 

  13. Shen, G., Zhu, X., Xu, W., Tang, L., Kong, X.: Research on phase combination and signal timing based on improved k-medoids algorithm for intersection signal control. Wirel. Commun. Mob. Comput. 2020 (2020)

    Google Scholar 

  14. Vogel, A., Oremović, I., Šimić, R., Ivanjko, E.: Fuzzy traffic light control based on phase urgency. In: 2019 International Symposium ELMAR, pp. 9–14. IEEE (2019)

    Google Scholar 

  15. Yi-Fei, W., Zheng, G.: Research on polling based traffic signal control strategy with fuzzy control. In: 2018 IEEE 4th International Conference on Computer and Communications (ICCC), pp. 500–504. IEEE (2018)

    Google Scholar 

  16. Liang, X., Du, X., Wang, G., Han, Z.: A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)

    Article  Google Scholar 

  17. Zhao, C., Hu, X., Wang, G.: Pdlight: a deep reinforcement learning traffic light control algorithm with pressure and dynamic light duration. arXiv preprint arXiv:2009.13711 (2020)

  18. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y., et al.: Policy gradient methods for reinforcement learning with function approximation. In: NIPs, vol. 99, pp. 1057–1063. Citeseer (1999)

    Google Scholar 

  19. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

    Google Scholar 

  20. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2575–2582. IEEE (2018)

    Google Scholar 

  21. Codecá, L., Frank, R., Faye, S., Engel, T.: Luxembourg sumo traffic (lust) scenario: traffic demand evaluation. IEEE Intell. Transp. Syst. Mag. 9(2), 52–63 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Open Project of Chongqing Vehicle Test & Research Institute (No. 20AKC18) and Sanya Science and Education Innovation Park of Wuhan University of Technology (No. 2020KF0055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, P., Song, B., Chen, X., Liu, B. (2021). A Traffic Light Control System Based on Reinforcement Learning and Adaptive Timing. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics