Abstract
Cervical Spondylotic Myelopathy (CSM) is serious cervical spondylosis that can lead to severe disability. To help physicians make diagnoses quickly and efficiently, automatic segmentation methods are urgently needed in clinical practice. Nevertheless, there are great challenges with this task, such as ambiguity of structure boundary and uncertainty of the segmented region. Although some deep learning methods have performed well in medical segmentation tasks, they are not good at processing complex medical images. To solve those problems in automatic medical segmentation, this paper proposes a novel shape-aware segmentation framework for the cervical spondylotic myelopathy segmentation from diffusion tensor imaging (DTI). Specifically, a new shape-aware strategy was adopted that enables backbone networks to simultaneously aggregate both global and local context and efficiently capture long-range dependencies. Extending pyramid pooling with a shape-aware strategy, the shape-aware pyramid pooling module(SAAP) was adopted to integrate multi-scale information and compensate for spatial information loss. This module expands the field of perception and reduces interference in non-lesioned areas. The effectiveness of shape-aware U-net (SAU-net) was evaluated on the cervical spondylotic myelopathy dataset, which consists of 116 patients who underwent surgical decompression and DTI evaluation. The experiment proves that our method can effectively segment CSM lesions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shabani, S., Kaushal, M., Budde, M.D., et al.: Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J. Neurosurg. Spine 33(1), 65–72 (2020)
Montgomery, D., Brower, R.: Cervical spondylotic myelopathy. Clinical syndrome and natural history. Orthop. Clin. N. Am. 23, 487–493 (1992)
Wang, S., Hu, Y., Shen, Y., et al.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)
Wang, S.Q., Li, X., Cui, J.L., et al.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)
Hu, Y., Chan, T.Y., Li, X., et al.: Identify myelopathic cervical spinal cord using diffusion tensor image: a data-driven approach. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 548–551. IEEE (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Lei, B., Xia, Z., Jiang, F., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)
Wang, S., Shen, Y., Shi, C., et al.: Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6, 29979–29993 (2018)
Li, M., Hu, W., Xie, X., et al.: SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans. Med. Imaging 39(7), 2289–2301 (2020)
Cheng, T., Wang, X., Huang, L., Liu, W.: Boundary-preserving mask R-CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_39
Li, L., Wu, F., Yang, G., et al.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)
Dolz, J., Gopinath, K., Yuan, J., et al.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116–1126 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Li, X., Chen, H., Qi, X., et al.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: CVPR (2017)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Chen, L.-C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR (2016)
Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085 (2020)
Lei, B., Huang, S., Li, H., et al.: Self-co-attention neural network for anatomy segmentation in whole breast ultrasound. Med. Image Anal. 64, 101753 (2020)
Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Zhang, L., Xu, D., Arnab, A., Torr, P.H.S.: Dynamic graph message passing networks. In: CVPR (2020)
Oktay, O., Schlemper, J., Folgoc, L.L., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Wang, Z., Zou, N., Shen, D., et al.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 6315–6322 (2020)
He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Yang, H., et al.: CLCI-Net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30
Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)
Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)
Zhou, L., Zhang, C., Wu, M.: D-linknet: linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 182–186 (2018)
Wei, Y., Xiao, H., Shi, H., et al.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)
Deb, D., Ventura, J.: An aggregated multicolumn dilated convolution network for perspective-free counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 195–204 (2018)
Mou, L., Chen, L., Cheng, J., et al.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39(5), 1392–1403 (2019)
Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U2-Net: a 3D universal u-net for multi-domain medical image segmentation. In: Shen, D., et al.(eds.) MICCAI 2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_33
Dunnhofer, M., Antico, M., Sasazawa, F., et al.: Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Med. Image Anal. 60, 101631 (2020)
Qi, K., Yang, H., Li, C., Liu, Z., Wang, M., Liu, Q., Wang, S.: X-net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 247–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_28
Hou, Q., Zhang, L., Cheng, M.M., et al.: Strip pooling: rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012 (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Acknowledgement
This work is supported by National Natural Science Foundations of China under Grant No. 61872351, International Science and Technology Cooperation Projects of Guangdong under Grant 2019A050510030, Guangdong Science Fund for Distinguished Young Scholars under Grant 2021B1515020019, Shenzhen Key Basic Research Project under Grant No. JCYJ20200109115641762 and Shenzhen Science Fund for Excellent Young Scholars under Grant No. RCYX2020071411464121.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, Z., Wang, S., Hu, Y., Zhou, H., Shen, Y., Li, X. (2021). Cervical Spondylotic Myelopathy Segmentation Using Shape-Aware U-net. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_48
Download citation
DOI: https://doi.org/10.1007/978-981-16-5188-5_48
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-5187-8
Online ISBN: 978-981-16-5188-5
eBook Packages: Computer ScienceComputer Science (R0)