Skip to main content

Cervical Spondylotic Myelopathy Segmentation Using Shape-Aware U-net

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1947 Accesses

Abstract

Cervical Spondylotic Myelopathy (CSM) is serious cervical spondylosis that can lead to severe disability. To help physicians make diagnoses quickly and efficiently, automatic segmentation methods are urgently needed in clinical practice. Nevertheless, there are great challenges with this task, such as ambiguity of structure boundary and uncertainty of the segmented region. Although some deep learning methods have performed well in medical segmentation tasks, they are not good at processing complex medical images. To solve those problems in automatic medical segmentation, this paper proposes a novel shape-aware segmentation framework for the cervical spondylotic myelopathy segmentation from diffusion tensor imaging (DTI). Specifically, a new shape-aware strategy was adopted that enables backbone networks to simultaneously aggregate both global and local context and efficiently capture long-range dependencies. Extending pyramid pooling with a shape-aware strategy, the shape-aware pyramid pooling module(SAAP) was adopted to integrate multi-scale information and compensate for spatial information loss. This module expands the field of perception and reduces interference in non-lesioned areas. The effectiveness of shape-aware U-net (SAU-net) was evaluated on the cervical spondylotic myelopathy dataset, which consists of 116 patients who underwent surgical decompression and DTI evaluation. The experiment proves that our method can effectively segment CSM lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shabani, S., Kaushal, M., Budde, M.D., et al.: Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J. Neurosurg. Spine 33(1), 65–72 (2020)

    Google Scholar 

  2. Montgomery, D., Brower, R.: Cervical spondylotic myelopathy. Clinical syndrome and natural history. Orthop. Clin. N. Am. 23, 487–493 (1992)

    Google Scholar 

  3. Wang, S., Hu, Y., Shen, Y., et al.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  4. Wang, S.Q., Li, X., Cui, J.L., et al.: Prediction of myelopathic level in cervical spondylotic myelopathy using diffusion tensor imaging. J. Magn. Reson. Imaging 41(6), 1682–1688 (2015)

    Article  Google Scholar 

  5. Hu, Y., Chan, T.Y., Li, X., et al.: Identify myelopathic cervical spinal cord using diffusion tensor image: a data-driven approach. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 548–551. IEEE (2015)

    Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  7. Lei, B., Xia, Z., Jiang, F., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Anal. 64, 101716 (2020)

    Google Scholar 

  8. Wang, S., Shen, Y., Shi, C., et al.: Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6, 29979–29993 (2018)

    Article  Google Scholar 

  9. Li, M., Hu, W., Xie, X., et al.: SACNN: self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans. Med. Imaging 39(7), 2289–2301 (2020)

    Article  Google Scholar 

  10. Cheng, T., Wang, X., Huang, L., Liu, W.: Boundary-preserving mask R-CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_39

    Chapter  Google Scholar 

  11. Li, L., Wu, F., Yang, G., et al.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)

    Google Scholar 

  12. Dolz, J., Gopinath, K., Yuan, J., et al.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116–1126 (2018)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Li, X., Chen, H., Qi, X., et al.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  15. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  16. Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  17. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  18. Chen, L.-C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR (2016)

    Google Scholar 

  19. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085 (2020)

    Google Scholar 

  20. Lei, B., Huang, S., Li, H., et al.: Self-co-attention neural network for anatomy segmentation in whole breast ultrasound. Med. Image Anal. 64, 101753 (2020)

    Google Scholar 

  21. Wang, X., Girshick, R., Gupta, A., et al.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  22. Zhang, L., Xu, D., Arnab, A., Torr, P.H.S.: Dynamic graph message passing networks. In: CVPR (2020)

    Google Scholar 

  23. Oktay, O., Schlemper, J., Folgoc, L.L., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  24. Wang, Z., Zou, N., Shen, D., et al.: Non-local U-Nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 6315–6322 (2020)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  26. Yang, H., et al.: CLCI-Net: cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 266–274. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_30

    Chapter  Google Scholar 

  27. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  28. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  29. Zhou, L., Zhang, C., Wu, M.: D-linknet: linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 182–186 (2018)

    Google Scholar 

  30. Wei, Y., Xiao, H., Shi, H., et al.: Revisiting dilated convolution: a simple approach for weakly-and semi-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7268–7277 (2018)

    Google Scholar 

  31. Deb, D., Ventura, J.: An aggregated multicolumn dilated convolution network for perspective-free counting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 195–204 (2018)

    Google Scholar 

  32. Mou, L., Chen, L., Cheng, J., et al.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39(5), 1392–1403 (2019)

    Article  Google Scholar 

  33. Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U2-Net: a 3D universal u-net for multi-domain medical image segmentation. In: Shen, D., et al.(eds.) MICCAI 2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_33

    Chapter  Google Scholar 

  34. Dunnhofer, M., Antico, M., Sasazawa, F., et al.: Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Med. Image Anal. 60, 101631 (2020)

    Google Scholar 

  35. Qi, K., Yang, H., Li, C., Liu, Z., Wang, M., Liu, Q., Wang, S.: X-net: brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 247–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_28

    Chapter  Google Scholar 

  36. Hou, Q., Zhang, L., Cheng, M.M., et al.: Strip pooling: rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012 (2020)

    Google Scholar 

  37. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  38. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundations of China under Grant No. 61872351, International Science and Technology Cooperation Projects of Guangdong under Grant 2019A050510030, Guangdong Science Fund for Distinguished Young Scholars under Grant 2021B1515020019, Shenzhen Key Basic Research Project under Grant No. JCYJ20200109115641762 and Shenzhen Science Fund for Excellent Young Scholars under Grant No. RCYX2020071411464121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Wang, S., Hu, Y., Zhou, H., Shen, Y., Li, X. (2021). Cervical Spondylotic Myelopathy Segmentation Using Shape-Aware U-net. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics