Skip to main content

Empirical Mode Decomposition Based Deep Neural Networks for AQI Forecasting

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

Abstract

The Air Quality Index (AQI) is a significant indicator that can intuitively reflect the levels of air pollution. Accurate forecasting of AQI will help governments control air pollution problems and prevent citizens from a smoggy environment. In this research, we propose a general hybrid model for short-term AQI forecasting. First, we adopt the Empirical Mode Decomposition (EMD) method to decompose historical AQI time series for extracting decomposed components as features. Then, the decomposed components of AQI and the concentration of other air pollutants, such as PM2.5, PM10 and etc., are utilized as input features to train 2 parallel 1D Convolutional neural networks (1DCNN). Finally, the output of the 1DCNN is adopted as input features for train a Long short-term memory (LSTM) network. Experimental based on datasets from 2 observation stations demonstrated that the proposed hybrid model performs the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, B.-J., Kim, B., Lee, K.: Air pollution exposure and cardiovascular disease. Toxicol. Res. 30(2), 71–75 (2014). https://doi.org/10.5487/TR.2014.30.2.071

    Article  Google Scholar 

  2. Cohen, A.J., et al.: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082), 1907–1918 (2017)

    Article  Google Scholar 

  3. Xing, Y.-F., Xu, Y.-H., Shi, M.-H., Lian, Y.-X.: The impact of PM2. 5 on the human respiratory system. J. Thorac. Dis. 8(1), E69 (2016)

    Google Scholar 

  4. Nigam, S., Rao, B.P.S., Kumar, N., Mhaisalkar, V.A.: Air quality index-a comparative study for assessing the status of air quality. Res. J. Eng. Technol. 6(2), 267–274 (2015)

    Article  Google Scholar 

  5. Massey, D., Masih, J., Kulshrestha, A., Habil, M., Taneja, A.: Indoor/outdoor relationship of fine particles less than 2.5 \(\mu \)m (PM2. 5) in residential homes locations in central Indian region. Build. Environ. 44(10), 2037–2045 (2009)

    Article  Google Scholar 

  6. Pearce, D.: Economic valuation and health damage from air pollution in the developing world. Energy Policy 24(7), 627–630 (1996)

    Article  Google Scholar 

  7. Mahajan, S., Chen, L.-J., Tsai, T.-C.: An empirical study of PM2. 5 forecasting using neural network. In: Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1–7. IEEE (2017)

    Google Scholar 

  8. Biancofiore, F., et al.: Recursive neural network model for analysis and forecast of PM10 and PM2. 5. Atmos. Pollut. Res. 8(4), 652–659 (2017)

    Article  Google Scholar 

  9. Zhu, H., Lu, X.: The prediction of PM2. 5 value based on ARMA and improved BP neural network model. In: Proceedings of the 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 515–517. IEEE (2016)

    Google Scholar 

  10. Voukantsis, D., Karatzas, K., Kukkonen, J., Räsänen, T., Karppinen, A., Kolehmainen, M.: Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2. 5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 409(7), 1266–1276 (2011)

    Article  Google Scholar 

  11. Liu, H., Li, Q., Dongbing, Yu., Yu, G.: Air quality index and air pollutant concentration prediction based on machine learning algorithms. Appl. Sci. 9(19), 4069 (2019)

    Article  Google Scholar 

  12. Sotomayor-Olmedo, A., Aceves-Fernández, M.A., Gorrostieta-Hurtado, E., Pedraza-Ortega, C., Ramos-Arreguín, J.M., Emilio Vargas-Soto, J.: Forecast urban air pollution in Mexico City by using support vector machines: a kernel performance approach (2013)

    Google Scholar 

  13. Russo, A., Raischel, F., Lind, P.G.: Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 79, 822–830 (2013)

    Article  Google Scholar 

  14. Ao, D., Cui, Z., Gu, D.: Hybrid model of air quality prediction using k-means clustering and deep neural network. In: 2019 Chinese Control Conference (CCC), pp. 8416–8421. IEEE (2019)

    Google Scholar 

  15. Song, X., Huang, J., Song, D.: Air quality prediction based on LSTM-Kalman model. In: Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 695–699. IEEE (2019)

    Google Scholar 

  16. Zou, Z., Cai, T., Cao, K.: An urban big data-based air quality index prediction: a case study of routes planning for outdoor activities in Beijing. Environ. Plann. B: Urban Anal. City Sci. (2019). https://doi.org/10.1177/2399808319862292

  17. Zhenghua, W., Zhihui, T.: Prediction of air quality index based on improved neural network. In: Proceedings of the 2017 International Conference on Computer Systems, Electronics and Control (ICCSEC), pp. 200–204. IEEE (2017)

    Google Scholar 

  18. Chen, J., Zeng, G.-Q., Zhou, W., Wei, D., Kang-Di, L.: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. Energy Convers. Manage. 165, 681–695 (2018)

    Article  Google Scholar 

  19. Zhan, C., Wu, F., Wu, Z., Tse Chi, K.: Daily rainfall data construction and application to weather prediction. In: Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  20. Tao, Q., Liu, F., Li, Y., Sidorov, D.: Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU. IEEE Access 7, 76690–76698 (2019)

    Article  Google Scholar 

  21. Cheng, Y., Zhang, H., Liu, Z., Chen, L., Wang, P.: Hybrid algorithm for short-term forecasting of PM2. 5 in China. Atmos. Environ. 200, 264–279 (2019)

    Article  Google Scholar 

  22. Zhu, S., Lian, X., Liu, H., Jianming, H., Wang, Y., Che, J.: Daily air quality index forecasting with hybrid models: a case in China. Environ. Pollut. 231, 1232–1244 (2017)

    Article  Google Scholar 

  23. Chen, Z., Ye, X., Huang, P.: Estimating carbon dioxide (CO2) emissions from reservoirs using artificial neural networks. Water 10(1), 26 (2018)

    Article  Google Scholar 

  24. Shaohua, X., Li, J., Liu, K., Lu, W.: A parallel GRU recurrent network model and its application to multi-channel time-varying signal classification. IEEE Access 7, 118739–118748 (2019)

    Article  Google Scholar 

  25. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Seri. A: Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  26. MEP China. Technical regulation on ambient air quality index (on trial)(hj633-2012). China Environmental Science Press, Beijing, China (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Guangdong Province, China (2020A1515010761), Science and Technology Program of Guangzhou, China (201904010224), and National Science Foundation of China Project 72004174.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, W., Fu, Y., Lin, F., Liu, J., Zhan, C. (2021). Empirical Mode Decomposition Based Deep Neural Networks for AQI Forecasting. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics