Skip to main content

Citation Recommendation Based on Community Merging and Time Effect

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2021)

Abstract

The accuracy of information network partition is not high and the characteristics of metapath cannot represent the attributes of network nodes in the existing academic citation recommendation algorithms. In order to solve the problems, a similarity measurement algorithm, community merging and time effect PathSim (CMTE-PathSim), based on community merging and time effect is proposed. On the premise of dividing heterogeneous information network (HIN) effectively, the algorithm considers the influence of node information on the characteristics of metapath. The results of Top-k query verify the effectiveness of CMTE-PathSim on real datasets and improve the quality of citation recommendation.

Supported by the Scientific Research Fund of Liaoning Provincial Education Department (L2019048), and Talent Scientific Research Rund of LSHU (2016XJJ-033) of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J., Liu, Y., Zhao, S., Zhang, Y.: Citiation recommendation based on weighted heterogeneous information network containing semantic linking. In: 2019 IEEE ICME, Shanghai, China, pp. 31–36. IEEE (2019)

    Google Scholar 

  2. Perotti, J.I., Tessone, C.J., Caldarelli, G.: Hierarchical mutual information for the comparison of hierarchical community structures in complex networks. Phys. Rev. E 92(6), 062825 (2015)

    Google Scholar 

  3. West, J.D., Wesley-Smith, I., Bergstrom, C.T.: A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans. Big Data 2(2), 113–123 (2016)

    Article  Google Scholar 

  4. Wang, H., Li, W.: Relational collaborative topic regression for recommender systems. IEEE Trans. Knowl. Data Eng. 27(5), 1343–1355 (2015)

    Article  Google Scholar 

  5. Ma, X., Wang, R.: Personalized scientific paper recommendation based on heterogeneous graph representation. IEEE Access 7, 79887–79894 (2019)

    Article  Google Scholar 

  6. Zhang, C.X., Huang, C., Yu, L., Zhang, X.L., Chawla, N.V.: Camel: content-aware and meta-path augmented metric learning for author Identification. In: Proceedings of the 2018 World Wide Web Conference, pp. 709–718. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2018)

    Google Scholar 

  7. Musto, C., Lops, P., Gemmis, M.D., Semeraro, G.: Context-aware graph-based recommendations exploiting Personalized PageRank. Knowl. Based Syst. 216(3), 106806 (2021)

    Google Scholar 

  8. Roul, R.K., Sahoo, J.K.: A novel approach for ranking web documents based on query-optimized personalized pagerank. Int. J. Data Sci. Anal. 11(1), 37–55 (2020). https://doi.org/10.1007/s41060-020-00232-2

    Article  Google Scholar 

  9. Ozsoy, M.G., et al.: MP4Rec: explainable and accurate top-N recommendations in heterogeneous information networks. IEEE Access 8, 181835–181847 (2020)

    Article  Google Scholar 

  10. Do, P., Pham, P.: DW-PathSim: a distributed computing model for topic-driven weighted meta-path-based similarity measure in a large-scale content-based heterogeneous information network. J. Inform. Telecommun. 3(1), 19–38 (2019)

    Article  Google Scholar 

  11. Do, P., Pham, P.: W-PathSim++: the novel approach of topic-driven similarity search in large-scaled heterogeneous network with the support of Spark-based DataLog. In: 2018 10th International Conference on Knowledge and Systems Engineering, Ho Chi Minh City, Vietnam, pp. 102–106. IEEE (2018)

    Google Scholar 

  12. Hou, U., L., Yao, K., Mak, H., F.: PathSimExt: revisiting PathSim in heterogeneous information networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014, LNCS, vol. 8485, pp. 38–42. Springer, Cham (2014). https://doi.org/10.1007/97833190801096

  13. Wang, W., Gong, Z.G., Ren, J., Xia, F.: Venue topic model–enhanced joint graph modelling for citation recommendation in scholarly big data. ACM Trans. Asian Low Res. Lang. Inform. Process. 20(1), 1–15 (2020)

    Google Scholar 

  14. Yang, Y., X., Ren, G., C.: HanLP-based technology function matrix construction on Chinese process patents. IJMCMC 11(3), 48–64 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, L., Jin, L., Jia, Y., Wu, C. (2021). Citation Recommendation Based on Community Merging and Time Effect. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2021. Communications in Computer and Information Science, vol 1452. Springer, Singapore. https://doi.org/10.1007/978-981-16-5943-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5943-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5942-3

  • Online ISBN: 978-981-16-5943-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics