Skip to main content

Recursive Visual Cryptography Scheme with PRWP and Additional Basis Matrix

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

  • 314 Accesses

Abstract

Recursive visual cryptography scheme (RVCS) is a high-security image secret sharing scheme in which the shares are recursively encoded into sub-shares at numerous levels. Here we presented a new scheme for RVCS with a perfect reconstruction of white pixels (PRWP) and an additional basis matrix (ABM) which boosts contrast. The method has been illustrated on the basis of investigational examinations. We made an evaluation between the conventional schemes and the proposed scheme through investigational analysis. The results revealed that our scheme improves the visual quality and ensures security and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (Ed.) Advances in Cryptology—EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053419

  2. Pandey, D., Kumar, A., Singh, Y.: Feature and future of visual cryptography based schemes. In: Singh, K., Awasthi, A.K. (Eds.) QShine 2013. LNICST, vol. 115, pp. 816–830. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37949-9_71

  3. Monoth, T., Babu, A.P.: Recursive visual cryptography using random basis column pixel expansion. In: 10th International Conference on Information Technology (ICIT 2007), Orissa, 2007, pp. 41–43. IEEE Xplore. https://doi.org/10.1109/ICIT.2007.32

  4. Monoth, T.: Contrast-enhanced recursive visual cryptography scheme based on additional basis matrices. In: Smart Intelligent Computing and Applications, vol. 105, pp.179–187. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1927-3_18

  5. Monoth, T., Babu Anto, P.: Analysis and design of tamperproof and contrast-enhanced secret sharing based on visual cryptography schemes, Ph. D. thesis, Kannur University, Kerala, India (2012). http://shodhganga.inflibnet.ac.in

  6. Ateniese G., Blundo C., De Santis A., Stinson D.R.: Constructions and bounds for visual cryptography. In: Meyer F., Monien B. (Eds.) Automata, Languages and Programming. ICALP 1996. Lecture Notes in Computer Science, vol. 1099, pp. 416–428. Springer, Berlin, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_147

  7. Weir, J., Yan, W.A.: Comprehensive study of visual cryptography. In: Shi Y.Q. (Eds.) Transactions on Data Hiding and Multimedia Security V. Lecture Notes in Computer Science, vol. 6010, pp. 70–105. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14298-7_5

  8. Jisha, T.E., Monoth, T.: Recent research advances in black and white visual cryptography schemes, soft computing for problem solving. In: Advances in Intelligent Systems and Computing, vol. 1048, pp. 479–492. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0035-0_38

  9. Chavan, P.V., Atique, M.: Secured approach for authentication using threshold-based hierarchical visual cryptography. Int. J. Inf. Privacy Secur. Integr. 2(2), 159–175(2015). https://doi.org/10.1504/IJIPSI.2015.075440

  10. Monoth, T., Babu Anto, P.: Contrast-enhanced visual cryptography schemes based on perfect reconstruction of white pixels and additional basis matrix. Computational intelligence, cyber security and computational models. In: Advances in Intelligent Systems and Computing, vol. 412. pp. 361–368. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0251-9_34

  11. Jisha, T.E., Monoth, T.: Optimal contrast and size-invariant recursive VCS using perfect reconstruction of white pixels. Evolution in Computational Intelligence. In: Advances in Intelligent Systems and Computing, vol. 1176, pp. 181–189. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5788-0_17

  12. Jisha, T.E., Monoth, T.: WiP: Security enhanced size invariant visual cryptography with perfect reconstruction of white pixels. In: ICISS 2019, LNCS 11952, pp. 279–289, Springer (2019). https://doi.org/10.1007/978-3-030-36945-3_15

  13. Lin, T.H., Shiao, N.S., Chen, H.H., Tsai, C.S.: A new non-expansion visual cryptography scheme with high quality of recovered image. In: IET International Conference on Frontier Computing. Theory, Technologies and Applications. IEEE Xplore (2010) https://doi.org/10.1049/cp.2010.0571

  14. Huang, Y.-J., Chang, J.-D.: Non-expanded visual cryptography scheme with authentication. In: IEEE 2nd International Symposium on Next-Generation Electronics (ISNE)—IEEE (2013). https://doi.org/10.1109/ISNE.2013.6512319

  15. Chow, Y.W., Susilo, W., Wong, D.S.: Enhancing the perceived visual quality of a size invariant visual cryptography scheme. Information and Communications Security. Lecture Notes in Computer Science, vol. 7618. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  16. Ito, R., Kuwakado, H., Thanka, H.: Image size invariant visual cryptography. IEICE Trans. Fund. E82-A(10) (1999)

    Google Scholar 

  17. Liu, F., Guo, T., Wu, C.K., Qian, L.: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Commun. Image Represent 23(2), 331–342 (2012). Elsevier. https://doi.org/10.1016/j.jvcir.2011.11.003

  18. Chen, Y.-F., Chan, Y.-K., Huang, C.-C., Tsai, M.-H., Chu, Y.-P.: A multiple-level visual secret-sharing scheme without image size expansion. Inf. Sci. 177(21), 4696–4710 (2007)

    Article  MathSciNet  Google Scholar 

  19. Mohan, A., Binu, V.P.: Quality improvement in color extended visual cryptography using ABM and PRWP. In: International Conference on Data Mining and Advanced Computing (SAPIENCE)ss. IEEE Xplore, (2016). https://doi.org/10.1109/SAPIENCE.2016.7684159

  20. Yan, B., Wang, Y.F., Song, L.Y., et al.: Size-invariant extended visual cryptography with embedded watermark based on error diffusion. Multimed. Tools Appl. 75, 11157 (2016). https://doi.org/10.1007/s11042-015-2838-4

    Article  Google Scholar 

  21. Yan, B., Xiang, Y., Hua, G.: Improving the visual quality of size-invariant visual cryptography for grayscale images. An Analysis-by-Synthesis (AbS) approach. IEEE Trans. Image Process. 28(2). https://doi.org/10.1109/TIP.2018.2874378

  22. Yan, B., Wang, Y.-F., Song, L.-Y., Yang, H.-M.: Size-invariant extended visual cryptography with embedded watermark based on error diffusion. Multimed. Tools Appl. 75(18), 11157–11180 (2016). https://doi.org/10.1007/s11042-015-2838-4

  23. Ou., Duanhao, Sun, W., Wu., Xiaotian: Non-expansible XOR-based visual cryptography scheme with meaningful shares. Signal Process. 108, 604–621 (2015). https://doi.org/10.1016/j.sigpro.2014.10.011(Elsevier)

  24. Sharma, R., Agrawal, N.K., Khare, A., Pal, A.K.: An improved size invariant n, n extended visual cryptography scheme. Int. J. Bus. Data Commun. Netw. 12(2) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jisha, T.E., Monoth, T. (2022). Recursive Visual Cryptography Scheme with PRWP and Additional Basis Matrix. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_17

Download citation

Publish with us

Policies and ethics