Skip to main content

Recovering ROI of Medical Image Through Curvelet Transform-Based Watermarking Method

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

  • 325 Accesses

Abstract

Telemedicine is a forward-thinking research area that is gaining traction. A remote specialist relies heavily on scan images or therapeutic images and data of the patient for diagnostic purposes. While sending a scan image to a remote specialist, intruders may change the Region of Interest (ROI). If the ROI in a clinical picture has been modified, the remote specialist is responsible for restoring it. This paper uses a novel robust watermarking method based on Curvelet Transform to retrieve the ROI in a medical picture. The proposed method hides ROI information in a diagnostically unimportant part of the medical picture (Region of Non-Interest) using Curvelet Transform. Experiments show that using this novel method, the ROI in a medical image can be restored to its original state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coatrieux, G., Lecornu, L., Sankur, B., Roux, Ch.: A Review of image watermarking applications in healthcare. In: International Conference of the IEEE EMBS, pp. 4691–4694 (2006)

    Google Scholar 

  2. Chao, H.M., Hsu, C.M., Miaou, A.G.: A data hiding technique with authentication, integration and confidentiality for electronic patient records. In: IEEE Transactions on Information Technology in Biomedicine, pp. 46–53 (2002)

    Google Scholar 

  3. American Hospital Association, The Promise of Tele-health for Hospitals, Health Systems and their Communities, TrendWatch (2015)

    Google Scholar 

  4. Dinya, E., Toth, T.: Health Informatics: e-Health and Telemedicine. Semmelweis University, Institute of Health Informatics (2013)

    Google Scholar 

  5. Pan, W., Coatrieux, G., Cuppens-Boulahia, N., Cuppens, F., Roux, C.: Medical image integrity control combining digital signature and lossless watermarking. In: International Conference on Data Privacy Management and Autonomous Spontaneous Security, pp. 153–162. Springer, Berlin (2010)

    Google Scholar 

  6. Al-Haj, A., Amer, A.: Secured telemedicine using region-based watermarking with tamper localization. J. Dig. Imag. 737–750 (2014)

    Google Scholar 

  7. Khor, H.L., Liew, S.C., Zain, J.M.: Region of interest-based tamper detection and lossless recovery watermarking scheme (ROI-DR) on ultrasound medical images. J. Dig. Imag. 328–349 (2017)

    Google Scholar 

  8. Surekha, B., Rohit, T.: Crypto-watermarking scheme for tamper detection of medical images. Comput. Methods Biomech. Biomed. Eng. Imag. Vis. 345–355 (2019)

    Google Scholar 

  9. Thabit, R., Khoo, B.E.: Medical image authentication using SLT and IWT schemes. Multimed. Tools Appl. 309–332 (2017)

    Google Scholar 

  10. Arda, U., Guzin, U.: A new medical image watermarking technique with finer tamper localization. J. Dig. Imag. 665–680 (2017)

    Google Scholar 

  11. Al-Haj, A., Mohammad, A., Amer, A.: Crypto-watermarking of transmitted medical images. J. Dig. Imag. 26–38 (2016)

    Google Scholar 

  12. Badshah, G., Liew, S. C., Zain, J. M., Ali, M.: Watermark compression in medical image watermarking using lempel-ziv-welch (LZW) lossless compression technique. J. Dig. Imag. 216–225 (2016)

    Google Scholar 

  13. Liu, Y., Qu, X., Xin, G., Liu, P.: ROI-based reversible data hiding scheme for medical images with tamper detection. IEICE Trans. Inf. Syst. 769–774 (2015)

    Google Scholar 

  14. Candes, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 219–266 (2004)

    Google Scholar 

  15. Leung, H.Y., Cheng, L.M., Cheng, L.L.: A robust watermarking scheme using selective curvelet coefficients. Int. J. Wavelets Multi Resolut. Inf. Process. 163–181 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eswaraiah, R., Sudhir, T. (2022). Recovering ROI of Medical Image Through Curvelet Transform-Based Watermarking Method. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_21

Download citation

Publish with us

Policies and ethics