Skip to main content

Performance of Deconvolution Network and UNET Network for Image Segmentation

  • Conference paper
  • First Online:
Evolution in Computational Intelligence

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 267))

  • 344 Accesses

Abstract

In this paper, we have discussed the architecture of certain deep learning algorithms namely, Deconvolutional Neural Network and UNET Network. These are compared to the performances of models based on each of them using various mathematical parameters. Briefly, in both of these architectures, the image is passed through several convolution layers, each followed by a rectified linear unit (ReLU) and a max-pooling operation in the contraction path. This enables to capture the feature information. A similar symmetric expanding path helps find spatial information by passing the image through some up-convolution layers. In UNET though, in the expanding path, the spatial information obtained is concatenated with feature information that was obtained from the contraction path. For the CityScapes Dataset, we can see that models based on UNET clearly outperform the prior models based on Deconvolution Network by evaluating and comparing their IOU values. The network was trained on Google Colab’s GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiley, V., Lucas, T.: Computer vision and image processing: a paper review. Int. J. Artif. Intell. Res. 2, 29–36 (2018)

    Google Scholar 

  2. Barik, D., Mondal, M.: Object identification for computer vision using image segmentation. In: 2010 2nd International Conference on Education Technology and Computer, pp. V2-170–V2-172 (2010). https://doi.org/10.1109/ICETC.2010.5529412

  3. Wang, L., Chen, X., Hu, L., Li, H.: Overview of image semantic segmentation technology. In: 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 19–26 (2020)

    Google Scholar 

  4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The Cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: 2015 IEEE International Conference on Computer Vision, pp. 1520-1528 (2015)

    Google Scholar 

  6. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535 (2010). https://doi.org/10.1109/CVPR.2010.5539957

  7. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  8. Chauhan, R., Ghanshala, K.K., Joshi, R.C.: Convolutional neural network (CNN) for image detection and recognition. In: 1st International Conference on Secure Cyber Computing and Communication (ICSCCC), pp. 278–282 (2018). https://doi.org/10.1109/ICSCCC.2018.8703316

  9. “Review: DeconvNet — Unpooling Layer (Semantic Segmentation)”, Towardsdatascience by Sik-Ho Tsang. Referred from https://towardsdatascience.com/review-deconvnet-unpooling-layer-semantic-segmentation-55cf8a6e380e. Accessed 8 Oct 2018

  10. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI, vol. 9351. Springer (2015)

    Google Scholar 

  11. “UNet — Line by Line Explanation”, Towardsdatascience by Jeremy Zhang. Referred from https://towardsdatascience.com/unet-line-by-line-explanation-9b191c76baf5. Accessed 18 Oct 2019

  12. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019). https://doi.org/10.1109/CVPR.2019.00075

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jash Jayesh Kothari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jayesh Kothari, J., Racha, S.S., Sengupta, J. (2022). Performance of Deconvolution Network and UNET Network for Image Segmentation. In: Bhateja, V., Tang, J., Satapathy, S.C., Peer, P., Das, R. (eds) Evolution in Computational Intelligence. Smart Innovation, Systems and Technologies, vol 267. Springer, Singapore. https://doi.org/10.1007/978-981-16-6616-2_34

Download citation

Publish with us

Policies and ethics