Skip to main content

Boosting Accuracy of Machine Learning Classifiers for Heart Disease Forecasting

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics

Abstract

Heart disease is one of the significant diseases which causes a huge number of deaths all over the world. Even medical specialists are facing difficulties for the proper diagnosis of heart disease which raises a need for a new classification scheme. But it becomes a crucial task for healthcare providers due to the rapid increase of medical data size every day. To resolve this, several machine learning algorithms are discussed in this paper, and these algorithms’ performance is measured by using different metrics like accuracy, precision, recall, and F1-score. But these algorithms are not acceptable for accurate prediction and diagnosis. To further improve the accuracy of classifiers, different ensemble methods were used because for any machine learning algorithm, accuracy is the main criteria to measure the performance. In this new methodology, the feature importance method is used as a pre-processing technique to get a minimum number of attributes rather than using all attributes in the dataset which has impact on the accuracy of classifiers. After that pre-processed data is trained by using various classifiers like linear regression, SVM, naïve Bayes, and decision tree, and then finally, three ensemble methods like bagging, AdaBoosting, and Gradient boosting are used to boost the performance of the classifiers. From the observations, the bagging ensemble algorithm elevated the highest accuracy, 80.21%, than the accuracy of other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anbuselvan, P.: Heart disease prediction using machine learning techniques. Int. J. Eng. Res. Technol. (IJERT) 09(11), (2020)

    Google Scholar 

  2. Nti, I.K., Adekoya, A.F., Weyori, B.A.: A comprehensive evaluation of ensemble learning for stock- market prediction. J. Big Data 7, 20 (2020). https://doi.org/10.1186/s40537-020-00299-5

    Article  Google Scholar 

  3. Yekkala, I., Dixit, S. Jabbar, M.A.: Prediction of heart disease using ensemble learning and particle swarm optimization. In: 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 691–698 (2017).https://doi.org/10.1109/SmartTechCon.2017.8358460

  4. Lalitha, R.V.S., Kavitha, K., Vijaya Durga, Y., Sowbhagya Naidu, K., Uma Manasa, S.: A machine learning approach for air pollution analysis. In: Bhattacharyya, S., Nayak, J., Prakash, K.B., Naik B., Abraham, A. (eds.) International Conference on Intelligent and Smart Computing in Data Analytics. Advances in Intelligent Systems and Computing, vol. 1312. Springer, Singapore. https://doi.org/10.1007/978-981-33-6176-8_9.

  5. Raza, K.: Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule. (2019). https://doi.org/10.1016/B978-0-12-815370-3.00008-6

  6. Rajendran, N.A., Vincent, D.R.: Heart disease prediction system using ensemble of machine learning algorithms. Recent Patentsn Eng. 13, 1 (2019). https://doi.org/10.2174/1872212113666190328220514

  7. Jan, M., Awan, A.A., Khalid, M.S., Nisar, S.: Ensemble approach for developing a smart heart disease prediction system using classification algorithms. Res Rep Clin Cardiol. 9, 33–45 (2018). https://doi.org/10.2147/RRCC.S172035

    Article  Google Scholar 

  8. S. Kamalapurkar, GH, S.G.: Online portal for prediction of heart disease using machine learning ensemble method (PrHD-ML). In: 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), pp. 1–6 (2020). https://doi.org/10.1109/B-HTC50970.2020.9297918

  9. Bulut, F.: Heart attack risk detection using bagging classifier. In: 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, pp. 2013–2016 (2016). https://doi.org/10.1109/SIU.2016.7496164

  10. Lalitha, R.V.S., Lalitha, J.D., Kavitha, K., RamaReddy, T., Srinivas, R., Sujana, C.: Prediction and analysis of corona virus disease (COVID-19) using Cubist and OneR. In: R.V.S. Lalitha, et al. (eds.) IOP Conference Series: Materials Science and Engineering, Volume 1074, International Conference on Computer Vision, High Performance Computing, Smart Devices and Networks (CHSN 2020) 28th-29th December, Kakinada, India (2021). IOP Conf. Ser.: Mater. Sci. Eng. 1074, 012022, https://doi.org/10.1088/1757-899x/1074/1/012022

  11. Mienye, I.D., Sun, Y., Wang, Z.: An improved ensemble learning approach for the prediction of heart disease risk. Inf. Med. Unlocked 20, 100402 (2020). ISSN 2352-9148. https://doi.org/10.1016/j.imu.2020.100402. Embedded Syst. (WECON), Rajpura, 1–7 (2016). 1109/WECON.2016.7993480

  12. Omotosho, L., Olatunde, Y., Akanbi, C.: Comparison of adaboost and bagging ensemble method for prediction of heart disease (2019)

    Google Scholar 

  13. Yuan, K., Yang, L., Huang, Y., Li, Z.: Heart disease prediction algorithm based on ensemble learning, In: 2020 7th International Conference on Dependable Systems and Their Applications (DSA), pp. 293–298 (2020). https://doi.org/10.1109/DSA51864.2020.00052

  14. Habib, A.-Z.S.B., Tasnim T., Billah, M.M.: A study on coronary disease prediction using boosting-based ensemble machine learning approaches. In: 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), pp. 1–6 (2019). https://doi.org/10.1109/ICIET48527.2019.9290600.

  15. Singh, A., Kumar, R.: Heart disease prediction using machine learning algorithms. In: 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India pp. 452–457 (2020). https://doi.org/10.1109/ICE348803.2020.9122958.

  16. Dinesh, K.G., Arumugaraj, K., Santhosh, K.D., Mareeswari, V.: Prediction of cardiovascular disease using machine learning algorithms. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, pp. 1–7 (2018). https://doi.org/10.1109/ICCTCT.2018.8550857

  17. Rajesh, N., et al.: Prediction of heart disease using machine learning algorithms. Int. J. Eng. Technol. [S.l.], 7(2.32), 363–366 (2018). ISSN 2227-524X. Available at: https://www.sciencepubco.com/index.php/ijet/article/view/15714. Date accessed: 07 Jan 2021. https://doi.org/10.14419/ijet.v7i2.32.15714.

  18. Krishnan, S.J., Geetha, S.: Prediction of heart disease using machine learning algorithms. In: 2019 1st international conference on innovations in information and communication technology (ICIICT), CHENNAI, India, 2019, pp. 1–5. https://doi.org/10.1109/ICIICT1.2019.8741465

  19. Shankar, V., Kumar, V., Devagade, U., et al.: Heart disease prediction using CNN algorithm. SN COMPUT. SCI. 1, 170 (2020). https://doi.org/10.1007/s42979-020-0097-6

    Article  Google Scholar 

  20. Ram M.K., Sujana C., Srinivas R., Murthy G.S.N.: A fact-based liver disease prediction by enforcing machine learning algorithms. In: Smys, S., Tavares, J.M.R.S., Bestak, R., Shi, F. (eds.) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing, vol. 1318. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6862-0_45

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jalligampala, D.L.S., Lalitha, R.V.S., Anil Kumar, M., Akhila, N., Challapalli, S., Lakshmi, P.N.S. (2022). Boosting Accuracy of Machine Learning Classifiers for Heart Disease Forecasting. In: Satapathy, S.C., Peer, P., Tang, J., Bhateja, V., Ghosh, A. (eds) Intelligent Data Engineering and Analytics. Smart Innovation, Systems and Technologies, vol 266. Springer, Singapore. https://doi.org/10.1007/978-981-16-6624-7_12

Download citation

Publish with us

Policies and ethics