Skip to main content

PAPR Analysis of FBMC and UFMC for 5G Cellular Communications

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 266))

Abstract

Orthogonal frequency-division multiplexing (OFDM) is a renowned multiple access technique for fourth-generation (4G) wireless cellular systems, as it provides good transmitting power efficiency, multipath propagation and high spectral efficiency. This OFDM is not satisfying some of the requirements for fifth-generation (5G) cellular systems as it has having limitations of more side band leakage power, more peak-to-average power ratio (PAPR) and out-of-band radiation (OOB). The main objective of this paper is to design an efficient waveform which provides high spectral efficiency and low PAPR for 5G Systems. The distinct sub-carriers and different QAM modulations are used to analyse PAPR of various multiplexing techniques like universal-filtered multicarrier (UFMC) and filter bank multicarrier modulation (FBMC) which serve 5G requirements in comparison with OFDM for 4G. At the end of the analysis, this paper describes which modulation is best suited for 5G that satisfies all basic requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H., Haas, H., Fletcher, S., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless communication networks. Commun. Mag. IEEE 52(2), 122–130 (2014)

    Google Scholar 

  2. Sahin, A., Guvenc, I., Arslan, H.: A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. Commun. Surv. Tutorials IEEE 16(3), 1312–1338 (2014)

    Article  Google Scholar 

  3. Kansal, P.K., Shankhwae, A.K.: FBMC vs OFDM waveform contenders for 5G wireless-communication-system. Wirel. Eng. Technol. 59–70 (2017). https://doi.org/10.4236/wet.2017.84005

  4. Choo, Y.S., Kim, J., Yang, W.Y.: MIMO-OFDM Wireless Communications with MATLAB. Wily (Asia) Ptee Ltd (2010)

    Google Scholar 

  5. Park, Y.: 5G Vision and Requirements. 5G Forum, Korea (2014)

    Google Scholar 

  6. Timoshenko, A.G., Osipenko, N.K., Bakhtin, A.A., Volkova, E.A.: 5G communication systems signal processing PAPR reduction technique. In: 2018 Systems of Signal Synchronization, Generating and Processing in telecommunication (SYNCHROINFO)

    Google Scholar 

  7. Sidiq, S., Mustafa, F., Sheikh, J.A., Malik, B.A.: FBMC and UFMC: the modulation techniques for 5G. In: 2019 International Conference on Power Electronics, Control and Automation (ICPECA), New Delhi, India, 2019, pp. 1–5. https://doi.org/10.1109/ICPECA47973.2019.8975581.

  8. Xu, L.T.: Modulation method of FBMC with low delay in 5G system. Electron. Meas. Technol. 41 (2018)

    Google Scholar 

  9. Sathipriya, N.S.: Implementation and study of universal filtered multi carrier frequency offset for 5G. Int. J. Electron. Commun. (IIJEC) 4(5), 1-5 (2016)

    Google Scholar 

  10. Si, F., Zheng, J., Chen, C.: Reliability-Based signal detection for universal filtered multicarrier. IEEE Wirel. Commun. Lett. https://doi.org/10.1109/LWC.2020.3043735

  11. Vamsi, T.S., Krishna, M.V., Kumar, T.S.: Channel estimation techniques for OFDM and GFDM: a review. Test Eng. Manage. 83, 17143–17149. ISSN: 0193-4120

    Google Scholar 

  12. Baig, I., Farooq, U., Hasan, N.U., Zghaibeh, M., Arshad, M.A., Imran, M.: A joint SLM and precoding based PAPR reduction scheme for 5G UFMC cellular networks. In: 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 2020, pp. 30–33. https://doi.org/10.1109/ICCIT-144147971.2020.9213778

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sairam Vamsi, T., Terlapu, S.K., Vamshi Krishna, M. (2022). PAPR Analysis of FBMC and UFMC for 5G Cellular Communications. In: Satapathy, S.C., Peer, P., Tang, J., Bhateja, V., Ghosh, A. (eds) Intelligent Data Engineering and Analytics. Smart Innovation, Systems and Technologies, vol 266. Springer, Singapore. https://doi.org/10.1007/978-981-16-6624-7_35

Download citation

Publish with us

Policies and ethics