Skip to main content

Establishment and Analysis of a Combined Diagnostic Model of Acute Myocardial Infarction Based on Random Forests and Artificial Neural Networks

  • Conference paper
  • First Online:
Medical Imaging and Computer-Aided Diagnosis (MICAD 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 810))

  • 271 Accesses

Abstract

Acute myocardial infarction is a serious disease worldwide that kills approximately 8.5 million patients each year. It can occur in multiple age groups and, despite the more diverse diagnostic techniques available, it has a number of limitations. Therefore, a diagnostic model based on gene biomarkers should be developed to assist existing diagnostic methods and improve the efficiency of diagnosis. For this research, we applied three datasets, one for screening DEGs and the other two for validation. We selected the DEGs of AMI from the first dataset and used a random forest classifier to identify key genes, including TREM-like transcript 2 (TREML2), interleukin-1 receptor type 2, CSF3R, HMGB2, nuclear factor interleukin 3 regulated, granzyme K (GZMK), MXD1, KIAA1324, NTNG2, and LOC440737. Among these genes, TREML2, HMGB2, GZMK, MXD1, KIAA1324, NTNG2, and LOC440737 have never been associated with AMI. Next, we successfully used an artificial neural network to construct a new model to diagnose AMI and verified the diagnostic effect of the model using the two validation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G. W. Reed, J. E. Rossi, and C. P. Cannon, “Acute myocardial infarction,” The Lancet, vol. 389, no. 10065, pp. 197–210, 2017.

    Google Scholar 

  2. R. W. Yeh, S. Sidney, M. Chandra, M. Sorel, J. V. Selby, and A. S. Go, “Population trends in the incidence and outcomes of acute myocardial infarction,” New England Journal of Medicine, vol. 362, no. 23, pp. 2155–2165, 2010.

    Google Scholar 

  3. Thygesen K, Alpert JS, Jaffe AS,Simoons ML, Chaitman BR, White HD (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol 60(16):1581–1598

    Google Scholar 

  4. P. Libby, “Mechanisms of acute coronary syndromes and their implications for therapy,” N Engl J Med, vol. 368, pp. 2004–2013, 2013.

    Google Scholar 

  5. W. S. Weintraub, S. R. Daniels, L. E. Burke, B. A. Franklin, D. C. Goff Jr, L. L. Hayman, D. Lloyd-Jones, D. K. Pandey, E. J. Sanchez, A. P. Schram et al., “Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American heart association,” Circulation, vol. 124, no. 8, pp. 967–990, 2011.

    Google Scholar 

  6. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD (2012) Third universal definition of myocardial infarction. J Am Coll Cardiol

    Google Scholar 

  7. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM et al (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American college of cardiology/American heart association task force on practice guidelines. J Am Coll Cardiol 63(25 Part B):2889–2934

    Google Scholar 

  8. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S, ESD Group (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315

    Google Scholar 

  9. H. Jneid, J. L. Anderson, R. S. Wright, C. D. Adams, C. R. Bridges, D. E. Casey, S. M. Ettinger, F. M. Fesmire, T. G. Ganiats, A. M. Lincoff et al., “2012 accf/aha focused update of the guideline for the management of patients with unstable angina/non–st-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update) a report of the American college of cardiology foundation/American heart association task force on practice guidelines,” Journal of the American College of Cardiology, vol. 60, no. 7, pp. 645– 681, 2012.

    Google Scholar 

  10. Liu, S., Xiao, Z., You, X. and Su, R., 2022. Multistrategy boosted multicolony whale virtual parallel optimization approaches. Knowledge-Based Systems, 242, p.108341.

    Google Scholar 

  11. Su R, Gu Q, Wen T (2014) Optimization of high-speed train control strategy for traction energy saving using an improved genetic algorithm. J Appl Math

    Google Scholar 

  12. H. Takano, M. Ohtsuka, H. Akazawa, H. Toko, M. Harada, H. Hasegawa, T. Nagai, and I. Komuro, “Pleiotropic effects of cytokines on acute myocardial infarction: G-csf as a novel therapy for acute myocardial infarction,” Current pharmaceutical design, vol. 9, no. 14, pp. 1121–1127, 2003.

    Google Scholar 

  13. R. Beekman and I. P. Touw, “G-csf and its receptor in myeloid malignancy,” Blood, The Journal of the American Society of Hematology, vol. 115, no. 25, pp. 5131–5136, 2010.

    Google Scholar 

  14. J. E. Maxson, J. Gotlib, D. A. Pollyea, A. G. Fleischman, A. Agarwal, C. A. Eide, D. Bottomly, B. Wilmot, S. K. McWeeney, C. E. Tognon et al., “Oncogenic csf3r mutations in chronic neutrophilic leukemia and atypical cml,” New England Journal of Medicine, vol. 368, no. 19, pp. 1781–1790, 2013.

    Google Scholar 

  15. S. Fujiyoshi, S. Honda, M. Minato, M. Ara, H. Suzuki, E. Hiyama, and A. Taketomi, “Hypermethylation of csf3r is a novel cisplatin resistance marker and predictor of response to postoperative chemotherapy in hepatoblastoma,” Hepatology Research, vol. 50, no. 5, pp. 598–606, 2020.

    Google Scholar 

  16. A. Smith, L. Keen, M. Billingham, M. Perry, C. Elson, J. Kirwan, J. Sims, M. Doherty, T. Spector, and J. Bidwell, “Extended haplotypes and linkage disequilibrium in the il1r1–il1a–il1b–il1rn gene cluster: association with knee osteoarthritis,” Genes & Immunity, vol. 5, no. 6, pp. 451–460, 2004.

    Google Scholar 

  17. C. A. Dinarello, “The interleukin-1 family: 10 years of discovery 1,” The FASEB Journal, vol. 8, no. 15, pp. 1314–1325, 1994.

    Google Scholar 

  18. V. A. Peters, J. J. Joesting, and G. G. Freund, “Il-1 receptor 2 (il-1r2) and its role in immune regulation,” Brain, behavior, and immunity, vol. 32, pp. 1–8, 2013.

    Google Scholar 

  19. J. Lin, Q. Li, T. Jin, J. Wang, Y. Gong, Q. Lv, M. Wang, J. Chen, M. Shang, Y. Zhao et al., “Cardiomyocyte il-1r2 protects heart from ischemia/reperfusion injury by attenuating il-17ra-mediated cardiomyocyte apoptosis,” Cell Death & Disease, vol. 13, no. 1, pp. 1–12, 2022.

    Google Scholar 

  20. J. Chen, L. Yu, S. Zhang, and X. Chen, “Network analysis-based approach for exploring the potential diagnostic biomarkers of acute myocardial infarction,” Frontiers in physiology, vol. 7, p. 615, 2016.

    Google Scholar 

  21. A. P. Ambrosy, G. C. Fonarow, J. Butler, O. Chioncel, S. J. Greene, M. Vaduganathan, S. Nodari, C. S. Lam, N. Sato, A. N. Shah et al., “The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries,” Journal of the American College of Cardiology, vol. 63, no. 12, pp. 1123–1133, 2014.

    Google Scholar 

  22. Y.-J. Weng, D. J.-Y. Hsieh, W.-W. Kuo, T.-Y. Lai, H.-H. Hsu, C.-H. Tsai, F.-J. Tsai, D.-Y. Lin, J. A. Lin, C.-Y. Huang et al., “E4bp4 is a cardiac survival factor and essential for embryonic heart development,” Molecular and cellular biochemistry, vol. 340, no. 1, pp. 187–194, 2010

    Google Scholar 

  23. Velmurugan BK, Chang R-L, Marthandam Asokan S, Chang C-F, Day C-H, Lin Y-M, Lin Y-C, Kuo W-W, Huang C-Y (2018) A minireview of E4BP4/NFIL3 in heart failure. J Cell Physiol 233(11):8458–8466

    Google Scholar 

  24. Y. Wang, Z. Kuang, X. Yu, K. A. Ruhn, M. Kubo, and L. V. Hooper, “The intestinal microbiota regulates body composition through nfil3 and the circadian clock,” Science, vol. 357, no. 6354, pp. 912–916, 2017.

    Google Scholar 

  25. Tang H, Tan C, Cao X, Liu Y, Zhao H, Liu Y, Zhao Y (2021) NFIL3 facilitates neutrophil autophagy, neutrophil extracellular trap formation and inflammation during gout via REDD1-dependent mTOR inactivation. Front Med 8

    Google Scholar 

  26. G. Kang, H.-S. Han, and S.-H. Koo, “Nfil3 is a negative regulator of hepatic gluconeogenesis,” Metabolism, vol. 77, pp. 13–22, 2017.

    Google Scholar 

  27. S.-Y. Wang, P.-Y. Gong, Y.-D. Zhang, T. Jiang et al., “The role of treml2 in Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 76, no. 3, pp. 799–806, 2020.

    Google Scholar 

  28. H.-R. Jo and J.-H. Jeong, “Microrna-mediated down regulation of hmgb2 contributes to cellular senescence in microvascular endothelial cells,” Cells, vol. 11, no. 3, p. 584, 2022.

    Google Scholar 

  29. L. T. Joeckel, R. Wallich, P. Martin, D. Sanchez-Martinez, F. C. Weber, S. F. Martin, C. Borner, J. Pardo, C. Froelich, and M. M. Simon, “Mouse granzyme k has pro-inflammatory potential,” Cell Death & Differentiation, vol. 18, no. 7, pp. 1112–1119, 2011.

    Google Scholar 

  30. L. T. Joeckel, C. C. Allison, M. Pellegrini, C. H. Bird, and P. I. Bird, “Granzyme k-deficient mice show no evidence of impaired antiviral immunity,” Immunology and Cell Biology, vol. 95, no. 8, pp. 676–683, 2017.

    Google Scholar 

  31. C. M. Dias, J. Punetha, C. Zheng, N. Mazaheri, A. Rad, S. Efthymiou, A. Petersen, M. Dehghani, D. Pehlivan, J. N. Partlow et al., “Homozygous missense variants in ntng2, encoding a presynaptic netrin-g2 adhesion protein, lead to a distinct neurodevelopmental disorder,” The American Journal of Human Genetics, vol. 105, no. 5, pp. 1048–1056, 2019.

    Google Scholar 

Download references

Acknowledgement

This study was supported by Shanxi Province Graduate Education Innovation Project (2022Y37), and Provincial Science and Technology Grant of Shanxi Province (20210302124588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, Z., Bi, X., Yang, J., Tang, X., Zhao, T. (2023). Establishment and Analysis of a Combined Diagnostic Model of Acute Myocardial Infarction Based on Random Forests and Artificial Neural Networks. In: Su, R., Zhang, Y., Liu, H., F Frangi, A. (eds) Medical Imaging and Computer-Aided Diagnosis. MICAD 2022. Lecture Notes in Electrical Engineering, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-16-6775-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6775-6_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6774-9

  • Online ISBN: 978-981-16-6775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics