Skip to main content

Modeling of Nonlinear Wave Phenomena in Interstellar Superthermal Plasma

  • Conference paper
  • First Online:
Proceedings of the Seventh International Conference on Mathematics and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1412))

  • 570 Accesses

Abstract

Modeling of dust-acoustic waves (DAWs) in a four-component plasma constituting negatively charged fluid dusts, superthermal electrons, positrons, and ions is analyzed. Employing the method of reductive perturbation, the Korteweg–de Vries (KdV) equation and modified KdV (mKdV) equations are formulated. Using a typical set of plasma parameters of interstellar medium, solutions of both equations are studied analytically and numerically. Each type of wave solution is confirmed by the plots of Hamiltonian energy function and potential energy function with specified set of physical parameters like superthermality index, number densities and temperature of plasma particles, and velocity of traveling wave in interstellar superthermal plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jehan N, Masood W, Mirza AM (2009) Planar and nonplanar dust acoustic solitary waves in electron-positron-ion-dust plasmas. Physica Scripta 80(3):035506. https://doi.org/10.1088/0031-8949/80/03/035506

  2. Zurek WH (1985) Annihilation radiation from the galactic center-Positrons in dust? Astrophys J 289:603–608. https://doi.org/10.1086/162921

    Article  Google Scholar 

  3. Merlino RL (2006) Dusty plasmas and applications in space and industry. Plasma Phys Appl 81:73–110

    Google Scholar 

  4. Rahman A, Mamun AA, Khurshed Alam SM (2008) Shock waves in a dusty plasma with dust of opposite polarities. Astrophys Space Sci 315:243–247. https://doi.org/10.1007/s10509-008-9824-5

    Article  Google Scholar 

  5. Demiray H, Abdikian A (2019) Modulational instability of acoustic waves in a dusty plasma with nonthermal electrons and trapped ions. Chaos Solitons Fractals 121:50–58. https://doi.org/10.1016/j.chaos.2019.02.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Saini NS, Chahal BS, Bains AS (2013) Large amplitude dust ion-acoustic solitary waves in a plasma in the presence of positrons. Astrophys Space Sci 347:129–138. https://doi.org/10.1007/s10509-013-1502-6

    Article  MATH  Google Scholar 

  7. Saini NS, Kourakis I, Hellberg MA (2009) Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons. Phys Plasmas 16(6):62903. https://doi.org/10.1063/1.3143036

    Article  Google Scholar 

  8. Singh K, Kaur N, Saini NS (2017) Head-on collision between two dust acoustic solitary waves and study of rogue waves in multicomponent dusty plasma. Phys Plasmas 24:063703. https://doi.org/10.1063/1.4984996

  9. Samanta UK, Saha A, Chatterjee P (2013) Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution. Phys Plasmas 20(2):022111. https://doi.org/10.1063/1.4791660

  10. Selim MM, El-Depsy A, El-Shamy EF (2015) Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons. Astrophys Space Sci 360:66. https://doi.org/10.1007/s10509-015-2574-2

    Article  Google Scholar 

  11. El-Monier SY, Atteya A (2018) Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions. IEEE Trans Plasma Sci 46:815–824. https://doi.org/10.1109/TPS.2017.2766097

    Article  Google Scholar 

  12. Rahim Z, Adnan M, Qamar A, Saha A (2018) Nonplanar dust-acoustic waves and chaotic motions in Thomas Fermi dusty plasmas. Phys Plasmas 25:083706. https://doi.org/10.1063/1.5016893

  13. Tamang J, Saha A (2020) Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma. Phys Plasmas 27(1):012105. https://doi.org/10.1063/1.5115821

  14. Saha A, Chatterjee P, Banerjee S (2020) An open problem on supernonlinear waves in a two-component Maxwellian plasma. Eur Phys J Plus 135(10):801. https://doi.org/10.1140/epjp/s13360-020-00816-8

    Article  Google Scholar 

  15. Herbst E (2001) The chemistry of interstellar space. Chem Soc Rev 30(3):168

    Article  Google Scholar 

  16. Adriani O, Barbarino G, Bazilevskaya G, et al (2009) An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature 458:607. https://doi.org/10.1038/nature07942

  17. Das GC, Sarma J, Uberoi C (1997) Explosion of soliton in a multicomponent plasma. Phys Plasmas 4(6):2095. https://doi.org/10.1063/1.872545

    Article  MathSciNet  Google Scholar 

  18. Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations dynamical systems and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  19. Chow SN, Hale JK (1981) Methods of bifurcation theory. Springer, New York

    MATH  Google Scholar 

  20. Dubinov AE, Kolotkov DY, Sazonkin MA (2012) Nonlinear theory of ion-sound waves in a dusty electron-positron-ion plasma. Tech Phys 57:585–593. https://doi.org/10.1134/S1063784212050088

    Article  Google Scholar 

  21. Klein U, Kerp J (2008) Physics of the interstellar medium. Argelander, Institut fur Astronomie, Bonn

    Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Sikkim Manipal Institute of Technology (SMIT) and Sikkim Manipal university (SMU) for sanctioning research fellowship under TMA Pai University Research Fund (Ref. No. 118/SMU/REG/ UOO/104/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punam Kumari Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumari Prasad, P., Saha, A. (2022). Modeling of Nonlinear Wave Phenomena in Interstellar Superthermal Plasma. In: Giri, D., Raymond Choo, KK., Ponnusamy, S., Meng, W., Akleylek, S., Prasad Maity, S. (eds) Proceedings of the Seventh International Conference on Mathematics and Computing . Advances in Intelligent Systems and Computing, vol 1412. Springer, Singapore. https://doi.org/10.1007/978-981-16-6890-6_64

Download citation

Publish with us

Policies and ethics