Skip to main content

New Classes of Exact Solutions to Three-dimensional Schrodinger Equation

  • Conference paper
  • First Online:
Proceedings of the Seventh International Conference on Mathematics and Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1412))

  • 575 Accesses

Abstract

New classes of exact solutions for the steady state Schrodinger equation are derived in this paper. The solutions are derived for both non-zero energy and zero energy problems. The sum of the inverse square law potential and a power law potential are considered in deriving the exact solutions. The solutions are derived in cartesian coordinates and without separating the variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla MS, Eleuch H (2014) Exact analytic solutions of the Schrödinger equations for some modified q-deformed potentials. J Appl Phys 115:234906. https://doi.org/10.1063/1.4883296

  2. Ahmadov AI, Aydin C, Huseynova NSh, Uzun O (2013) Analytical Solutions of the Schrödinger equation with Manning-Rosen potentialplus a Ring-Shaped-like potential. Int J Modern Phys E 22(10):1350072

    Google Scholar 

  3. Ahmadov AI, Aydin C, Uzun O (2014) Analytical solutions of the Klein-Fock- Gordon equation with the Manning-Rosen potential plus a Ring-Shaped like potential. Int J Modern Phys A 29:1450002

    Google Scholar 

  4. Ahmadov AI, Jafarzade ShI, Qocayeva MV (2015) Analytical solutions of the Schrödinger equation for the Hulthén potential within SUSY quantum mechanics. Int J Mod Phys A 30(32):1550193

    Article  Google Scholar 

  5. Ahmadov AI, Naeem M, Qocayeva MV, Tarverdiyeva VA (2018) Analytical bound state solutions of the Schrödinger equation for the manning-rosen plus Hulthén potential within SUSY quantum mechanics. Int J Mod Phys A 33(3):1850021

    Google Scholar 

  6. Ahmadov AI, Qocayev MV, Huseynova NSh (2017) The bound state solutions of the D-dimensional Schrödinger equation for the Hulthén potential within SUSY quantum mechanics. Int J Modern Phys E 2(5):1750028

    Article  Google Scholar 

  7. Ahn K,Choi MY, Dai B, Sohn S, Yang B (2018) Modeling stock return distributions with a quantum harmonic oscillator. Europhys Lett 120(3). https://doi.org/10.1209/0295-5075/120/38003

  8. Alhaidari AD (2002) Exact solutions of Dirac and Schrödinger equations for a large class of power-law potentials at zero energy. Int J Modern Phys A (Particles and Fields; Gravitation; Cosmology) 17(30):4551–4566

    Google Scholar 

  9. Baaquie BE (2004) Quantum finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Bagchi B, Quesne C (1997) Zero-energy states for a class of quasi-exactly solvable rational potentials. Phys Lett A 230(1–2):1–6

    Article  MathSciNet  Google Scholar 

  11. Chen G, Church DA, Englert BG, Henkel C, Rohwedder B, Scully MO, Zubairy MS (2007) Quantum computing devices: principles, designs, and analysis. Chapman and Hall/CRC, New York

    MATH  Google Scholar 

  12. Daboul J, Nieto MM (1995) Exact, E=0, classical solutions for general power-law potentials. Phys Rev E 52. https://doi.org/10.1103/PhysRevE.52.4430

  13. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35(11):1303–1309

    Article  Google Scholar 

  14. Farizky MN, Suparmi A, Cari C, Yunianto M (2016) Solution of three dimensional Schrodinger equation for Eckart and Manning-Rosen non-central potential using asymptotic iteration method. J Phys: Conf Ser 776:012085

    Google Scholar 

  15. Gao T, Chen Y (2017) A quantum anharmonic oscillator model for the stock market. Phys A 468:307–314

    Article  MathSciNet  Google Scholar 

  16. Guillaumín-España E, Núez-Yñpez HN, Salas-Brito AL (2014) Classical and quantum dynamics in an inverse square potential. J Math Phys 55:103509. https://doi.org/10.1063/1.4899083

  17. Hamzavi M, Ikhdair SM (2012) Approximate l-state solution of the trigonometric Pöschl–Teller potential. Mol Phys 110(24). https://doi.org/10.1080/00268976.2012.695029

  18. Iacob F, Lute M (2015) Exact solution to the Schrödinger’s equation with pseudo-Gaussian potential. J Math Phys 56:121501. https://doi.org/10.1063/1.4936309

  19. Ishkhanyan AM (2015) Exact solution of the Schrödinger equation for the inverse square root potential \(V_{0} /\sqrt{x}\). Europhys Lett 112(1). https://doi.org/10.1209/0295-5075/112/10006

  20. Joseph SP (2020) Several exact solutions for three dimensional Schrodinger equation involving inverse square and power law potentials. Malaya J Mathematik 8(2):650–656

    Article  MathSciNet  Google Scholar 

  21. Kobayashi T, Shimbori T (2002) Zero-energy solutions and vortices in Schrödinger equations. Phys Rev A 65. https://doi.org/10.1103/PhysRevA.65.042108

  22. Makowski AJ (2009) Exact, zero-energy, square-integrable solutions of a model related to the Maxwell’s fish-eye problem. Ann Phys 324(12):2465–2472

    Article  MathSciNet  Google Scholar 

  23. Martínez-y-Romero RP, Núez-Yñpez HN, Salas-Brito AL (2013) The two dimensional motion of a particle in an inverse square potential: classical and quantum aspects. J Math Phys 54:053509. https://doi.org/10.1063/1.4804356

  24. Millard F (1933) Manning and nathan rosen a potential function for the vibrations of diatomic molecules. Phys Rev 44(10):953

    Google Scholar 

  25. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:5764. https://doi.org/10.1103/PhysRev.34.57

  26. Mustafa O (2013) Auxiliary quantization constraints on the von roos ordering-ambiguity at zero binding energies; azimuthally symmetrized cylindrical coordinates. Modern Phys Lett A: Particles Fields Grav Cosmol Nucl Phys 28(19). https://doi.org/10.1142/S021773231350082X

  27. Naeimi IH, Batle J, Abdalla S (2017) Solving the two-dimensional Schrödinger equation using basis truncation: a hands-on review and a controversial case. Pramana J Phys 89:70. https://doi.org/10.1007/s12043-017-1467-z

  28. Olsen T, Latini S, Rasmussen F, Thygesen KS (2016) Simple screened hydrogen model of excitons in two-dimensional materials. Phys Rev Lett 116. https://doi.org/10.1103/PhysRevLett.116.056401

  29. Pade J (2009) Exact solutions of the Schrödinger equation for zero energy. Eur Phys J D 53. https://doi.org/10.1140/epjd/e2009-00074-0

  30. P’oschl G, Teller E (1933) Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift f’ur Physik 83(34):143–151

    Article  Google Scholar 

  31. Rosen N, Morse PM (1932) On the vibrations of polyatomic molecules. Phys Rev 42:210–217

    Google Scholar 

  32. Scarf FL (1958) New soluble energy band problem. Phys Rev 112. https://doi.org/10.1103/PhysRev.112.1137

  33. Tayari V, Hemsworth N, Fakih I, Favron A, Gaufrès E, Gervais G, Martel R, Szkopek T (2015) Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun 6:7702. https://doi.org/10.1038/ncomms8702

    Article  Google Scholar 

  34. Vasyuta VM, Tkachuk VM (2016) Falling of a quantum particle in an inverse square attractive potential. Eur Phys J D 70:267. https://doi.org/10.1140/epjd/e2016-70463-3

    Article  Google Scholar 

  35. Woods RD, Saxon DS (1954) Diffuse surface optical model for nucleon-nuclei scattering. Phys Rev 95(2). https://doi.org/10.1103/PhysRev.95.577

  36. Zhang C, Huang L (2010) A quantum model for the stock market. Phys A 389(24):5769–5775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subin P. Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joseph, S.P. (2022). New Classes of Exact Solutions to Three-dimensional Schrodinger Equation. In: Giri, D., Raymond Choo, KK., Ponnusamy, S., Meng, W., Akleylek, S., Prasad Maity, S. (eds) Proceedings of the Seventh International Conference on Mathematics and Computing . Advances in Intelligent Systems and Computing, vol 1412. Springer, Singapore. https://doi.org/10.1007/978-981-16-6890-6_69

Download citation

Publish with us

Policies and ethics