Skip to main content

Dynamical Properties of Shock and Snoidal Waves in a Superthermal Multi-ion Dusty Plasma

  • Conference paper
  • First Online:
Proceedings of the Seventh International Conference on Mathematics and Computing

Abstract

The phase plane analysis of the dust-ion-acoustic (DIA) shock and snoidal waves in the framework of Burgers equation is investigated in a superthermal multi-ion dusty plasma. The reductive perturbation method (RPT) is utilized to deduce the nonlinear Burgers equation. Analytical solutions of the DIA kink, anti-kink, and snoidal waves are derived based on heteroclinic and periodic trajectories, respectively, in the phase plots. The fundamental characteristics of the DIA kink, anti-kink, and snoidal waves, like width, amplitude, etc. are investigated based on the physical parameters. It is seen that the intrinsic parameters, like, kinematic viscosity, electron-to-light ion temperature ratio, heavy-to-light ion number density ratio, etc. play a significant role in the modification of DIA kink, anti-kink, and snoidal waves of the plasma system. Three types of quasi-periodic behavior of DIA are presented via phase plots and time series plots. The results of this investigation may be used to further understand the propagation of waves in space and laboratory plasma environments.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verheest F, Hellberg MA, Kourakis I (2013) Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons. Phys Rev E 87:043107

    Google Scholar 

  2. Chatterjee P, Roy K (2008) Large amplitude solitary waves in a four-component dusty plasma with nonthermal ions. Zeitschrift für Naturforschung A 63:393–399

    Article  Google Scholar 

  3. Bacha M, Tribeche M, Shukla PK (2012) Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons. Phys Rev E 85:056413

    Google Scholar 

  4. El-Shewy EK, Zaghbeer SK, El-Rahman AA (2019) Three-dimensional instability of opposite polarity nonthermal dusty plasma. Zeitschrift für Naturforschung A 74:131–138

    Article  Google Scholar 

  5. Baluku TK, Hellberg MA, Kourakis I, Saini NS (2010) Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys Plasmas 17:053702

    Google Scholar 

  6. Shukla PK, Silin VP (1992) Dust-ion acoustic wave. Phys Scr 45(5):508

    Article  Google Scholar 

  7. D’Angelo N, Merlino RL (1996) Current-driven dust-acoustic instability in a collisional plasma. Planet Space Sci 44(12):1593–1598

    Article  Google Scholar 

  8. Mamun AA, Shukla PK, Eliasson B (2009) Arbitrary amplitude dust ion-acoustic shock waves in a dusty plasma with positive and negative ions. Phys Plasmas 16(11):114503

    Google Scholar 

  9. Shukla PK, Mamun AA (2002) Introduction to dusty plasma physics. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  10. Luo QZ, D’Angelo N, Merlino RL (1999) Experimental study of shock formation in a dusty plasma. Phys Plasmas 6(9):3455

    Article  Google Scholar 

  11. Eliasson B, Shukla PK (2005) Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas. Phys Plasmas 12(2):024502

    Google Scholar 

  12. Shukla PK (2001) A survey of dusty plasma physics. Phys Plasmas 8(5):1791

    Article  Google Scholar 

  13. Merlino RL, Barkan A, Thompson C, D’Angelo N (1998) Laboratory studies of waves and instabilities in dusty plasmas. Phys Plasmas 5(5):1607

    Article  Google Scholar 

  14. Massey H (1976) Negative ions. Cambridge University Press, Cambridge

    Google Scholar 

  15. Gottscho RA, Gaebe CE (1986) Negative ions kinetics in RF glow discharges. IEEE Trans Plasma Sci 14(2):92–102

    Article  Google Scholar 

  16. Hines CO (1957) 1957 Heavy-ion effects in audio-frequency radio propagation. J Atmos Terr Phys 11(1):36–42

    Article  MathSciNet  Google Scholar 

  17. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487

    Article  MathSciNet  Google Scholar 

  18. Saha A, Tamang J (2019) Effect of q-nonextensive hot electrons on bifurcations of nonlinear and supernonlinear ion-acoustic periodic waves. Adv Space Res 63(5):1596–1606

    Article  Google Scholar 

  19. Saha A, Chatterjee P (2015) Solitonic, periodic and quasiperiodic behaviors of dust ion acoustic waves in superthermal plasmas. Braz J Phys 45:419–426

    Article  Google Scholar 

  20. Selim MM, El-Depsy A, El-Shamy EF (2015) Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons. Astrophys Space Sci 360:66

    Article  Google Scholar 

  21. Saha A, Chatterjee P (2014) Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with nonextensive ions. Astrophys Space Sci 351:533–537

    Article  Google Scholar 

  22. El-Monier SY, Atteya A (2018) Bifurcation analysis for dust-acoustic waves in a four-component plasma including warm ions. IEEE Trans Plasma Sci 46(4):815–824

    Article  Google Scholar 

  23. Tamang J, Saha A, Phase plane analysis of the dust-acoustic waves for the Burgers equation in a strongly coupled dusty plasma. Indian J Phys https://doi.org/10.1007/s12648-020-01733-3

  24. Saha A, Pradhan B, Banerjee S, Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma. Eur Phys J Plus https://doi.org/10.1140/epjp/s13360-020-00235-9

  25. Vasyliunas VM (1968) A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res 73:2839–2884

    Article  Google Scholar 

  26. Verheest F, Hellberg MA, Kourakis I (2013) Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions. Phys Plasmas 20(8):082309

    Google Scholar 

  27. Chow SN, Hale JK (1981) Methods of bifurcation theory. Springer, New York

    MATH  Google Scholar 

  28. Tamang J, Saha A (2019) Dynamical behavior of supernonlinearpositron-acoustic periodic waves and chaosin nonextensive electron-positron-ion plasmas. Zeitschrift für Naturforschung A. https://doi.org/10.1515/zna-2018-0476

    Article  Google Scholar 

  29. Strogatz SH (2007) Nonlinear dynamics and chaos. Westview Press (A member of the Pressus Books Group, USA)

    Google Scholar 

  30. Guckenheimer J, Holmes PJ (1983) Nonlinear oscillations dynamical systems and bifurcations of vector fields. Springer, New York

    Book  Google Scholar 

  31. Byrd PF, Friedman MD (1971) Handbook of elliptic integrals for engineers and scientists. Springer, Berlin

    Book  Google Scholar 

  32. Aslanov VS, Yudintsev VV (2015) Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages. Adv Space Res 55(2):660–667

    Article  Google Scholar 

  33. Mandi L, Saha A, Chatterjee P (2019) Dynamics of ion-acoustic waves in Thomas-Fermi plasmas with source term. Adv Space Res 64(2):427–435

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by TMA Pai University Research Grant: (6100/SMIT/R & D/Project/05/2018).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, S., Thapa, R., Saha, A., Mondal, K.K. (2022). Dynamical Properties of Shock and Snoidal Waves in a Superthermal Multi-ion Dusty Plasma. In: Giri, D., Raymond Choo, KK., Ponnusamy, S., Meng, W., Akleylek, S., Prasad Maity, S. (eds) Proceedings of the Seventh International Conference on Mathematics and Computing . Advances in Intelligent Systems and Computing, vol 1412. Springer, Singapore. https://doi.org/10.1007/978-981-16-6890-6_70

Download citation

Publish with us

Policies and ethics