Skip to main content

Iris Segmentation Based on an Adaptive Initial Contour and Partly-Normalization

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2021)

Abstract

Active contour is accurate for iris segmentation on the non-ideal and noisy iris images. However, understanding on how active contour reacts to the motion blur or blurry iris images is presently unclear and remains a major challenge in iris segmentation perspective. Moreover, studies on the initial contour position in the blurry iris images are infrequently reported and need further clarification. In addition, convergence or evolution speed is still a major drawback for active contour as it moves through the boundaries in the iris images. Based on the above issues, the experiment is conducted to obtain an accurate and fast iris segmentation algorithm for the blurry iris images. The initial contour is also investigated to clarify its positioning for the blurry iris segmentation. To achieve these objectives, the Wiener filter is used for pre-processing. Next, the morphological closing is applied to eliminate reflections. Then, the adaptive Chan-Vese active contour (ACVAC) algorithm is designed from the adaptive initial contour (AIC), δ and stopping function. Finally, the partly-normalization is designed where only prominent iris features near to the inner iris boundary are selected for normalization and feature extraction. The experimental results show that the proposed algorithm achieves the highest segmentation accuracy and the fastest computational time than the other active contour-based methods. The accurate initial contour position in the blurry iris images is clearly clarified. This shows that the proposed method is accurate for iris segmentation on the blurry iris images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarier, N.D.: Comments on biometric-based non-transferable credentials and their application in blockchain-based identity management. Comput. Secur. 105, 102243 (2021)

    Google Scholar 

  2. Shrivastava, H., Tcheslavski, G.V.: On the potential of EEG for biometrics: combining power spectral density with a statistical test. Int. J. Biom. 10(1), 52–64 (2018)

    Google Scholar 

  3. Hossain, M.S., Balagani, K.S., Phoha, V.V.: Effectiveness of symmetric rejection for a secure and user convenient multistage biometric system. Pattern Anal. Appl. 24(1), 49–60 (2020). https://doi.org/10.1007/s10044-020-00899-0

    Article  Google Scholar 

  4. Anne, N., et al.: Feasibility and acceptability of an iris biometric system for unique patient identification in routine HIV services in Kenya. Int. J. Med. Inform. 133, 104006 (2020).

    Google Scholar 

  5. Blasco, J., Peris-Lopez, P.: On the feasibility of low-cost wearable sensors for multi-modal biometric verification. Sensors 18(9), 2782 (2018)

    Article  Google Scholar 

  6. Amreen, S., Mockus, A., Zaretzki, R., Bogart, C., Zhang, Y.: ALFAA: active learning fingerprint based anti-aliasing for correcting developer identity errors in version control systems. Empir. Softw. Eng. 25(2), 1136–1167 (2020)

    Article  Google Scholar 

  7. Alsmirat, M.A., Al-Alem, F., Al-Ayyoub, M., Jararweh, Y., Gupta, B.: Impact of digital fingerprint image quality on the fingerprint recognition accuracy. Multimed. Tools Appl. 78(3), 3649–3688 (2018). https://doi.org/10.1007/s11042-017-5537-5

    Article  Google Scholar 

  8. Jamaludin, S., Azmir, N.A., Ayob, A.F.M., Zainal, N.: COVID-19 exit strategy: transitioning towards a new normal. Ann. Med. Surg. 59, 165–170 (2020)

    Article  Google Scholar 

  9. Zhang, M., He, Z., Zhang, H., Tan, T., Sun, Z.: Toward practical remote iris recognition: a boosting based framework. Neurocomputing 330, 238–252 (2019)

    Article  Google Scholar 

  10. Kaur, B.: Iris spoofing detection using discrete orthogonal moments. Multimed.Tools Appl. 79(9–10), 6623–6647 (2019). https://doi.org/10.1007/s11042-019-08281-x

    Article  Google Scholar 

  11. Cohen, F., Sowmithran, S., Li, C.: 3D iris model and reader for iris identification. Concurr. Comput. Pract. Exp. 33(12), e5653 (2021)

    Google Scholar 

  12. Shin, J., Kim, T., Lee, B., Yang, S.: IRIS-HiSA: highly scalable and available carrier-grade SDN controller cluster. Mob. Netw. Appl. 22(5), 894–905 (2017)

    Article  Google Scholar 

  13. Wang, K., Kumar, A.: Cross-spectral iris recognition using CNN and supervised discrete hashing. Pattern Recogn. 86, 85–98 (2019)

    Article  Google Scholar 

  14. Sujatha, E., Chilambuchelvan, A.: Multimodal biometric authentication algorithm using iris, palm print, face and signature with encoded dwt. Wirel. Pers. Commun. 99(1), 23–34 (2018)

    Article  Google Scholar 

  15. Chen, Y., Wu, C., Wang, Y.: T-center: a novel feature extraction approach towards large-scale iris recognition. IEEE Access 8, 32365–32375 (2020)

    Article  Google Scholar 

  16. Chang, Y.-T., Shih, T.K., Li, Y.-H., Kumara, W.G.C.W.: Effectiveness evaluation of iris segmentation by using geodesic active contour (GAC). J. Supercomput. 76(3), 1628–1641 (2018). https://doi.org/10.1007/s11227-018-2450-2

    Article  Google Scholar 

  17. Abdullah, M.A., Dlay, S.S., Woo, W.L., Chambers, J.A.: Robust iris segmentation method based on a new active contour force with a noncircular normalization. IEEE Trans. Syst. Man Cybern. Syst. 47(12), 3128–3141 (2016)

    Article  Google Scholar 

  18. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  19. Jamaludin, S., Zainal, N., Zaki, W.M.D.W.: Deblurring of noisy iris images in iris recognition. Bull. Electr. Eng. Inform. 10(1), 156–159 (2021)

    Article  Google Scholar 

  20. Baselice, F., Ferraioli, G., Ambrosanio, M., Pascazio, V., Schirinzi, G.: Enhanced wiener filter for ultrasound image restoration. Comput. Methods Progr. Biomed. 153, 71–81 (2018)

    Article  Google Scholar 

  21. Chen, Y., Liu, Y., Zhu, X.: Robust iris segmentation algorithm based on self-adaptive chan–vese level set model. J. Electron. Imaging 24(4), 043012 (2015)

    Google Scholar 

  22. Jamaludin, S., Zainal, N., Zaki, W.M.D.W.: Sub-iris technique for non-ideal iris recognition. Arab. J. Sci. Eng. 43(12), 7219–7228 (2018)

    Article  Google Scholar 

  23. Duan, Y., Peng, T., Qi, X.: Active contour model based on LIF model and optimal DoG operator energy for image segmentation. Optik 202, 163667 (2020)

    Google Scholar 

  24. Ding, K., Xiao, L., Weng, G.: Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 134, 224–233 (2017)

    Article  Google Scholar 

  25. Jin, R., Weng, G.: A robust active contour model driven by fuzzy c-means energy for fast image segmentation. Digit. Signal Process. 90, 100–109 (2019)

    Article  MathSciNet  Google Scholar 

  26. Fang, J., Liu, H., Zhang, L., Liu, J., Liu, H.: Active contour driven by weighted hybrid signed pressure force for image segmentation. IEEE Access 7, 97492–97504 (2019)

    Article  Google Scholar 

  27. Djekoune, A.O., Messaoudi, K., Amara, K.: Incremental circle hough transform: an improved method for circle detection. Optik 133, 17–31 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This study uses the CASIA v4 database collected by the Chinese Academy of Sciences' Institute of Automation (CASIA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrizan Jamaludin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamaludin, S., Zainal, N., Zaki, W.M.D.W., Ayob, A.F.M. (2021). Iris Segmentation Based on an Adaptive Initial Contour and Partly-Normalization. In: Mohamed, A., Yap, B.W., Zain, J.M., Berry, M.W. (eds) Soft Computing in Data Science. SCDS 2021. Communications in Computer and Information Science, vol 1489. Springer, Singapore. https://doi.org/10.1007/978-981-16-7334-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7334-4_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7333-7

  • Online ISBN: 978-981-16-7334-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics