Skip to main content

DWAFE: Achieve Accurate AIOps Fault Early Warning

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1494))

Included in the following conference series:

  • 467 Accesses

Abstract

Traditional information equipment’s operating status perception and fault alarms mainly rely on manual and traditional automated operation and maintenance, which have disadvantages such as high cost, low efficiency, and high false alarm rate. In order to achieve accurate fault warning,this paper proposes a dynamic threshold setting mechanism, which can calculate the dynamic threshold interval under the given confidence level based on the prediction results. In order to get the accurate prediction results, the Discrete Wavelet Transform (DWT)-Autoregressive Integrated Moving Average (ARIMA)-Exponentially Weighted Firefly Algorithm(EWFA)-Extreme Learning Machine (ELM) composite model called DWAFE for short is proposed. In this model, the original time series is divided into several subsequences by discrete wavelet transform, and ARIMA model and ELM optimized by EWFA are used for processing according to different stationarity. Finally, the prediction results of each subsequence are integrated by inverse wavelet transform. In addition, we also propose the Exponential Weighted Firefly Algorithm, which greatly improves the optimization performance and convergence speed of the firefly algorithm. Experiments on the core router data of Ningxia electric power company show that this method achieves better performance than Bi-LSTM, GRU and other benchmark models, and can achieve accurate and efficient information equipment fault early warning, thus greatly reducing the human and material costs of enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navon, A., Keller, Y.: Financial time series prediction using deep learning (2017)

    Google Scholar 

  2. Marino, D.L., Amarasinghe, K., Manic, M.: Building energy load forecasting using deep neural networks. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, pp. 7046–7051 (2016). https://doi.org/10.1109/IECON.2016.7793413

  3. Kouchaki, S., Sanei, S., Arbon, E.L., Dijk, D.: Tensor based singular spectrum analysis for automatic scoring of sleep EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 1–9 (2015). https://doi.org/10.1109/TNSRE.2014.2329557

    Article  Google Scholar 

  4. Ma, R., Boubrahimi, S.F., Hamdi, S.M., Angryk, R.A.: Solar flare prediction using multivariate time series decision trees. In: 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, pp. 2569–2578 (2017). https://doi.org/10.1109/BigData.2017.8258216

  5. Calheiros, R.N., Masoumi, E., Ranjan, R., Buyya, R.: Workload prediction using ARIMA Model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3(4), 449–458 (2015). https://doi.org/10.1109/TCC.2014.2350475

    Article  Google Scholar 

  6. Yunus, K., Thiringer, T., Chen, P.: ARIMA-based frequency-decomposed modeling of wind speed time series. IEEE Trans. Power Syst. 31(4), 2546–2556 (2016). https://doi.org/10.1109/TPWRS.2015.2468586

    Article  Google Scholar 

  7. Tabatabaie Nezhad, S.M., Nazari, M., Gharavol, E.A.: A novel DoS and DDoS attacks detection algorithm using ARIMA time series model and chaotic system in computer networks. IEEE Commun. Lett. 20(4), 700–703 (2016). https://doi.org/10.1109/LCOMM.2016.2517622

    Article  Google Scholar 

  8. Box, G.E.P., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  9. Wu, Y., Shen, K., Chen, Z., Wu, J.: Automatic measurement of fetal cavum septum pellucidum from ultrasound images using deep attention network. In: 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, pp. 2511–2515 (2020). https://doi.org/10.1109/ICIP40778.2020.9191002

  10. Akusok, A., Björk, K., Miche, Y., Lendasse, A.: High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015). https://doi.org/10.1109/ACCESS.2015.2450498

    Article  Google Scholar 

  11. Tang, J., Deng, C., Huang, G.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016). https://doi.org/10.1109/TNNLS.2015.2424995

    Article  MathSciNet  Google Scholar 

  12. Zhang, L., Zhang, D.: Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Trans. Instrum. Meas. 64(7), 1790–1801 (July 2015). https://doi.org/10.1109/TIM.2014.2367775

    Article  Google Scholar 

  13. Colak, I., Yesilbudak, M., Genc, N., Bayindir, R.: Multi-period prediction of solar radiation using ARMA and ARIMA models. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, pp. 1045–1049 (2015). https://doi.org/10.1109/ICMLA.2015.33

  14. Amini, M.H., Karabasoglu, O., Ilić, M.D., Boroojeni, K.G., Iyengar, S.S.: ARIMA-based demand forecasting method considering probabilistic model of electric vehicles’ parking lots. In: 2015 IEEE Power & Energy Society General Meeting, Denver, CO, pp. 1–5 (2015). https://doi.org/10.1109/PESGM.2015.7286050

  15. Duan, F., Dai, L., Chang, W., Chen, Z., Zhu, C., Li, W.: sEMG-based identification of hand motion commands using wavelet neural network combined With discrete wavelet transform. IEEE Trans. Industr. Electron. 63(3), 1923–1934 (2016). https://doi.org/10.1109/TIE.2015.2497212

    Article  Google Scholar 

  16. Javed, K., Gouriveau, R., Zerhouni, N.: A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering. IEEE Trans. Cybern. 45(12), 2626–2639 (2015). https://doi.org/10.1109/TCYB.2014.2378056

    Article  Google Scholar 

  17. Tang, J., Deng, C., Huang, G., Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2015). https://doi.org/10.1109/TGRS.2014.2335751

    Article  Google Scholar 

  18. Zhou, H., Huang, G., Lin, Z., Wang, H., Soh, Y.C.: Stacked extreme learning machines. IEEE Trans. Cybern. 45(9), 2013–2025 (2015). https://doi.org/10.1109/TCYB.2014.2363492

    Article  Google Scholar 

  19. Yang, X.-S.: Firefly algorithm. In: Nature-Inspired Metaheuristic Algorithms, pp. 79–90 (2008)

    Google Scholar 

  20. Su, H., Yong, B., Du, Q.: Hyperspectral band selection using improved firefly algorithm. IEEE Geosci. Remote Sens. Lett. 13(1), 68–72 (2016). https://doi.org/10.1109/LGRS.2015.2497085

    Article  Google Scholar 

  21. Su, H., Cai, Y., Du, Q.: Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 10(1), 309–320 (2017). https://doi.org/10.1109/JSTARS.2016.2591004

  22. Zhang, Z.: Improved Adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, pp. 1–2 (2018). https://doi.org/10.1109/IWQoS.2018.8624183

  23. Zou, F., Shen, L., Jie, Z., Zhang, W., Liu, W.: A sufficient condition for convergences of Adam and RMSProp. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 11119–11127 (2019). https://doi.org/10.1109/CVPR.2019.01138

  24. Razum, D., et al.: Optimal threshold selection for threshold-based fall detection algorithms with multiple features. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE (2018)

    Google Scholar 

  25. Shen, X., et al.: Dynamic threshold based target signal cooperative extraction method for high frequency electromagnetic environment measurement. In: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Major Program of the National Natural Science Foundation of China (71633006); Research on Key Technologies and Application of Multi-dimensional Perception of Medical Behavior (2020AAA0109600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Y., Gui, J., Wang, K., Chen, Z. (2021). DWAFE: Achieve Accurate AIOps Fault Early Warning. In: Cai, Z., Li, J., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2021. Communications in Computer and Information Science, vol 1494. Springer, Singapore. https://doi.org/10.1007/978-981-16-7443-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7443-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7442-6

  • Online ISBN: 978-981-16-7443-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics