Abstract
The conceptual structure of the ontology is usually represented by a graph, and the related information of this concept is encapsulated by a vector with uniform dimension. The essence of the similarity calculation of the ontology concept is the calculation of the distance of the vector corresponding to the vertex in the high-dimensional space. This paper continues to consider the ontology learning algorithm of the multi-dividing setting, and proposes a MB based learning strategy under this framework. The experimental data verifies the effectiveness of the given new algorithm.
The research is partially supported by NSFC (no. 11761083).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mao, Q., Li, X., Peng, H., et al.: Event prediction based on evolutionary event ontology knowledge. Future Gener. Comput. Syst. 115, 76–89 (2021)
Arafeh, M., Ceravolo, P., Mourad, A., et al.: Ontology based recommender system using social network data. Future Gener. Comput. Syst. 115, 769–779 (2021)
Rasmussen, M.H., Lefrancois, M., Schneider, G.F., Pauwels, P.: BOT: the building topology ontology of the W3C linked building data group. Semant. Web 12(1), 143–161 (2021)
Li, R., Mo, T., Yang, J., et al.: Ontologies-based domain knowledge modeling and heterogeneous sensor data integration for bridge health monitoring systems. IEEE Trans. Ind. Inform. 17(1), 321–332 (2021)
Gao, W., Chen, Y.: Approximation analysis of ontology learning algorithm in linear combination setting. J. Cloud Comput. 9(1), 1–10 (2020). https://doi.org/10.1186/s13677-020-00173-y
Gao, W., Zhang, Y., Guirao, J.L.G., Chen, Y.: A discrete dynamics approach to sparse calculation and applied in ontology science. J. Differ. Equ. Appl. 25(9–10), 1239–1254 (2019)
Gao, W., Guirao, J.L.G., Basavanagoud, B., Wu, J.: Partial multi-dividing ontology learning algorithm. Inform. Sci. 467, 35–58 (2018)
Gao, W., Farahani, M.R.: Generalization bounds and uniform bounds for multi-dividing ontology algorithms with convex ontology loss function. Comput. J. 60(9), 1289–1299 (2017)
Wu, J., Yu, X., Gao, W.: Disequilibrium multi dividing ontology learning algorithm. Commun. Stat.-Theor. M. 46(18), 8925–8942 (2017)
Wu, J., Sangaiah, A.K., Gao, W.: Graph learning-based ontology sparse vector computing. Symmetry 12(1562) (2020). https://doi.org/10.3390/sym12091562
Gao, W., Zhu, L., Wang, K.: Ontology sparse vector learning algorithm for ontology similarity measuring and ontology mapping via ADAL technology. Int. J. Bifurc. Chaos 25 (2015). https://doi.org/10.1142/S0218127415400349
Zhu, L.L., Hua, G., Zafarc, S., Pan, Y.: Fundamental ideas and mathematical basis of ontology learning algorithm. J. Intell. Fuzzy Syst. 35, 4503–4516 (2018)
Zhu, L.L., Hua, G., Aslam, A.: Ontology learning algorithm using weak functions. Open Phys. 16, 910–916 (2018)
Zhu, L., Hua, G., Baskonus, H.M., Gao, W.: Multi-dividing ontology learning algorithm and similarity measuring on topological indices. Front. Phys. 8(547963) (2020). https://doi.org/10.3389/fphy.2020.547963
Gao, W., Zhu, L.L., Wang, K.Y.: Ranking based ontology scheming using eigenpair computation. J. Intell. Fuzzy Syst. 31, 2411–2419 (2016)
Gao, W., Guo, Y., Wang, K.: Ontology algorithm using singular value decomposition and applied in multidisciplinary. Clust. Comput. 19(4), 2201–2210 (2016). https://doi.org/10.1007/s10586-016-0651-0
Gao, W., Baig, A.Q., Ali, H., Sajjad, W., Farahani, M.R.: Margin based ontology sparse vector learning algorithm and applied in biology science. Saud J. Biol. Sci. 24, 132C138 (2017)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lan, M., Gao, W. (2021). MB Based Multi-dividing Ontology Learning Trick. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds) Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol 1453. Springer, Singapore. https://doi.org/10.1007/978-981-16-7476-1_4
Download citation
DOI: https://doi.org/10.1007/978-981-16-7476-1_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-7475-4
Online ISBN: 978-981-16-7476-1
eBook Packages: Computer ScienceComputer Science (R0)