Skip to main content

A Generalized \(\chi ^2\) Divergence for Multisource Information Fusion

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1454))

Included in the following conference series:

  • 982 Accesses

Abstract

Divergence measure has been extensively applied in many fields. Basic probability assignment (BPA), instead of probability, is adopted to represent the belief degree of elements in Dempster-Shafer theory. But how to measure the divergence among BPAs is still under research. This paper proposes a novel belief divergence measure based on classic \(\chi ^2\) divergence. Comparing to the existing divergence, the new proposed divergence performs better in measuring discrepancy among BPAs. In addition, the proposed divergence is proved be a bounded, non-degenerated and symmetrical divergence measure. Numerical examples are presented to describe the effectiveness of proposed divergence measure.

Supported by the National Natural Science Foundation of China (No. 62003280).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai, J.W., Chang, J., Ang, L., Cheong, K.H.: Multi-level information fusion to alleviate network congestion. Inf. Fusion 63, 248–255 (2020)

    Article  Google Scholar 

  2. Fujita, H., Ko, Y.-C.: A heuristic representation learning based on evidential memberships: case study of UCI-SPECTF. Int. J. Approx. Reason. 120, 125–137 (2020)

    Article  MathSciNet  Google Scholar 

  3. Meng, D., Hu, Z., Wu, P., Zhu, S.P., Correia, J.A., De Jesus, A.M.: Reliability-based optimisation for offshore structures using saddlepoint approximation. In: Proceedings of the Institution of Civil Engineers-Maritime Engineering, vol. 173, pp. 33–42. Thomas Telford Ltd (2020)

    Google Scholar 

  4. Meng, D., Li, Y., He, C., Guo, J., Lv, Z., Wu, P.: Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling. Mater. Des. 206, 109789 (2021)

    Article  Google Scholar 

  5. Zhou, Z., Feng, Z., Hu, C., Hu, G., He, W., Han, X.: Aeronautical relay health state assessment model based on belief rule base with attribute reliability. Knowl. Based Syst. 197, 105869 (2020)

    Article  Google Scholar 

  6. Liu, P., Zhang, X., Pedrycz, W.: A consensus model for hesitant fuzzy linguistic group decision-making in the framework of Dempster-Shafer evidence theory. Knowl. Based Syst. 212, 106559 (2021)

    Article  Google Scholar 

  7. Jiang, W., Huang, K., Geng, J., Deng, X.: Multi-scale metric learning for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 31(3), 1091–1102 (2020)

    Article  Google Scholar 

  8. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the parrondo effect across biology. BioEssays 41(6), 1900027 (2019)

    Article  Google Scholar 

  9. Lai, J.W., Cheong, K.H.: Parrondo effect in quantum coin-toss simulations. Phys. Rev. E 101, 052212 (2020)

    Article  MathSciNet  Google Scholar 

  10. Meng, D., Xie, T., Wu, P., Zhu, S.-P., Hu, Z., Li, Y.: Uncertainty-based design and optimization using first order saddle point approximation method for multidisciplinary engineering systems, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part A: Civil Eng. 6(3), 04020028 (2020)

    Google Scholar 

  11. Meng, D., Xie, T., Wu, P., He, C., Hu, Z., Lv, Z.: An uncertainty-based design optimization strategy with random and interval variables for multidisciplinary engineering systems. Structures 32, 997–1004 (2021)

    Article  Google Scholar 

  12. Song, Y., Zhu, J., Lei, L., Wang, X.: Self-adaptive combination method for temporal evidence based on negotiation strategy. Sci. China Inf. Sci. 63(11), 1–13 (2020). https://doi.org/10.1007/s11432-020-3045-5

    Article  Google Scholar 

  13. Fei, L., Feng, Y., Liu, L.: Evidence combination using OWA-based soft likelihood functions. Int. J. Intell. Syst. 34(9), 2269–2290 (2019)

    Article  Google Scholar 

  14. Tian, Y., Liu, L., Mi, X., Kang, B.: ZSLF: a new soft likelihood function based on Z-numbers and its application in expert decision system. IEEE Trans. Fuzzy Syst. (2020)

    Google Scholar 

  15. Deng, J., Deng, Y.: Information volume of fuzzy membership function. Int. J. Comput. Commun. Control 16(1) (2021)

    Google Scholar 

  16. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex fuzzy sets. IEEE Trans. Fuzzy Syst. 10(2), 171–186 (2002)

    Article  Google Scholar 

  17. Wu, W., Song, Y., Zhao, W.: Evaluating evidence reliability on the basis of intuitionistic fuzzy sets. Information 9(12), 298 (2018)

    Article  Google Scholar 

  18. Alkouri, A.M.J.S., Salleh, A.R.: Complex intuitionistic fuzzy sets. In: AIP Conference Proceedings, vol. 1482, pp. 464–470. American Institute of Physics (2012)

    Google Scholar 

  19. Pan, L., Gao, X., Deng, Y., Cheong, K.H.: The constrained pythagorean fuzzy sets and its similarity measure. IEEE Trans. Fuzzy Syst. (2021)

    Google Scholar 

  20. Jiang, W., Cao, Y., Deng, X.: A novel Z-network model based on bayesian network and Z-number. IEEE Trans. Fuzzy Syst. 28(8), 1585–1599 (2019)

    Article  Google Scholar 

  21. Zhou, J., Su, X., Qian, H.: Risk assessment on offshore photovoltaic power generation projects in China using D numbers and ANP. IEEE Access 8, 144704–144717 (2020)

    Article  Google Scholar 

  22. Deng, Y.: Information volume of mass function. Int. J. Comput. Commun. Control 15(6) (2020)

    Google Scholar 

  23. Wen, T., Cheong, K.H.: The fractal dimension of complex networks: a review. Inf. Fusion 73, 87–102 (2021)

    Article  Google Scholar 

  24. Yager, R.R.: Generalized Dempster-Shafer structures. IEEE Trans. Fuzzy Syst. 27(3), 428–435 (2018)

    Article  Google Scholar 

  25. Ni, L., Chen, Y.-W., de Brujin, O.: Towards understanding socially influenced vaccination decision making: an integrated model of multiple criteria belief modelling and social network analysis. Eur. J. Oper. Res. 293(1), 276–289 (2021)

    Article  MathSciNet  Google Scholar 

  26. Zhou, M., Liu, X.-B., Chen, Y.-W., Yang, J.-B.: Evidential reasoning rule for MADM with both weights and reliabilities in group decision making. Knowl.-Based Syst. 143, 142–161 (2018)

    Article  Google Scholar 

  27. Pan, Y., Zhang, L., Wu, X., Skibniewski, M.J.: Multi-classifier information fusion in risk analysis. Inf. Fusion 60, 121–136 (2020)

    Article  Google Scholar 

  28. Liu, Z., Pan, Q., Dezert, J., Han, J.-W., He, Y.: Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. 48(5), 1605–1618 (2017)

    Article  Google Scholar 

  29. Liu, Z., Zhang, X., Niu, J., Dezert, J.: Combination of classifiers with different frames of discernment based on belief functions. IEEE Trans. Fuzzy Syst. (2020)

    Google Scholar 

  30. Fu, C., Xue, M., Chang, W., Xu, D., Yang, S.: An evidential reasoning approach based on risk attitude and criterion reliability. Knowl.-Based Syst. 199, 105947 (2020)

    Article  Google Scholar 

  31. Xu, X., Zhang, D., Bai, Y., Chang, L., Li, J.: Evidence reasoning rule-based classifier with uncertainty quantification. Inf. Sci. 516, 192–204 (2020)

    Article  Google Scholar 

  32. Liao, H., Ren, Z., Fang, R.: A Deng-entropy-based evidential reasoning approach for multi-expert multi-criterion decision-making with uncertainty. Int. J. Comput. Intell. Syst. 13(1), 1281–1294 (2020)

    Article  Google Scholar 

  33. Murphy, C.K.: Combining belief functions when evidence conflicts. Decis. Support Syst. 29(1), 1–9 (2000)

    Article  Google Scholar 

  34. Yong, D., WenKang, S., ZhenFu, Z., Qi, L.: Combining belief functions based on distance of evidence. Decis. Support Syst. 38(3), 489–493 (2004)

    Article  Google Scholar 

  35. Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 46, 23–32 (2019)

    Article  Google Scholar 

  36. Han, D., Dezert, J., Yang, Y.: Belief interval-based distance measures in the theory of belief functions. EEE Trans. Syst. Man Cybern. Syst. 48(6), 833–850 (2016)

    Article  Google Scholar 

  37. Babajanyan, S., Allahverdyan, A., Cheong, K.H.: Energy and entropy: path from game theory to statistical mechanics. Phys. Rev. Res. 2(4), 043055 (2020)

    Article  Google Scholar 

  38. Deng, X., Jiang, W.: On the negation of a Dempster-Shafer belief structure based on maximum uncertainty allocation. Inf. Sci. 516, 346–352 (2020)

    Article  MathSciNet  Google Scholar 

  39. Han, D., Dezert, J., Duan, Z.: Evaluation of probability transformations of belief functions for decision making. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 93–108 (2015)

    Article  Google Scholar 

  40. Jiang, W., Huang, C., Deng, X.: A new probability transformation method based on a correlation coefficient of belief functions. Int. J. Intell. Syst. 34(6), 1337–1347 (2019)

    Article  Google Scholar 

  41. Xiao, F.: Generalization of Dempster-Shafer theory: a complex mass function. Appl. Intell. 50, 3266–3275 (2020)

    Article  Google Scholar 

  42. Xiao, F.: CEQD: a complex mass function to predict interference effects. IEEE Trans. Cybern. (2021)

    Google Scholar 

  43. Xiao, F.: CED: a distance for complex mass functions. IEEE Trans. Neural Netw. Learn. Syst. 32(4), 1525–1535 (2020)

    Article  MathSciNet  Google Scholar 

  44. Deng, Y.: Uncertainty measure in evidence theory. Sci. China Inf. Sci. 63(11), 1–19 (2020). https://doi.org/10.1007/s11432-020-3006-9

    Article  MathSciNet  Google Scholar 

  45. Pearson, K.: X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London Edinburgh Dublin Philos. Mag. J. Sci. 50(302), 157–175 (1900)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, X., Xiao, F. (2021). A Generalized \(\chi ^2\) Divergence for Multisource Information Fusion. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds) Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol 1454. Springer, Singapore. https://doi.org/10.1007/978-981-16-7502-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7502-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7501-0

  • Online ISBN: 978-981-16-7502-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics