Skip to main content

A Lattice-Based Anonymous Authentication for Privacy Protection of Medical Data

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1454))

Included in the following conference series:

  • 983 Accesses

Abstract

With the process of informatization of medical institutions, the issue of protecting patients’ personal privacy information has also attracted more and more attention. At the same time, the development of quantum computers has also caused people’s attention post-quantum encryption algorithms. Lattice-based cryptography is a typical post-quantum encryption algorithm. In order to protect the privacy of medical information in the quantum computer environment, a medical information collection model that resists quantum attacks is proposed in this paper. The model is based on lattice-based anonymous identity authentication scheme. The lattice-based anonymous authentication scheme proposed in this paper has proved its security in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang, W., Ren, J., Zhang, Y.: Enabling trusted and privacy-preserving healthcare services in social media health networks. IEEE Trans. Multimedia (2018)

    Google Scholar 

  2. Obermeyer, Z., Emanuel, E.J.: Predicting the future - big data, machine learning, and clinical medicine. N. Engl. J. Med. 375(13), 1216–1219 (2016)

    Article  Google Scholar 

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  4. Zhong, H.-S., et al.: Quantum computational advantage using photons. Science 370(6523), 1460–1463 (2020)

    Article  Google Scholar 

  5. Moody, D., et al.: Status report on the second round of the NIST post-quantum cryptography standardization process, 2020–07-22 (2020)

    Google Scholar 

  6. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 99–108. Association for Computing Machinery, New York (1996)

    Google Scholar 

  7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

    Chapter  Google Scholar 

  8. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  9. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_14

    Chapter  Google Scholar 

  10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. Association for Computing Machinery, New York (2008)

    Google Scholar 

  11. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  12. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    Chapter  Google Scholar 

  13. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  14. Lyubashevsky, V.: Digital signatures based on the hardness of ideal lattice problems in all rings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 196–214. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_7

    Chapter  MATH  Google Scholar 

  15. Chen, J.S., Hu, Y.P., Liang, H.M., Gao, W.: Novel efficient identity-based signature on lattices. Frontiers Inf. Technol. Electron. Eng. 22, 244–250 (2020)

    Article  Google Scholar 

  16. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 390–399. Association for Computing Machinery, New York (2006)

    Google Scholar 

  17. Aguilar Melchor, C., Bettaieb, S., Boyen, X., Fousse, L., Gaborit, P.: Adapting Lyubashevsky’s signature schemes to the ring signature setting. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 1–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_1

    Chapter  Google Scholar 

  18. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016)

    Article  MathSciNet  Google Scholar 

  19. Micciancio, D.: Lattice-based cryptography, pp. 713–715. Springer, Boston (2011)

    Google Scholar 

  20. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Y., Yu, S., Li, F. (2021). A Lattice-Based Anonymous Authentication for Privacy Protection of Medical Data. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds) Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol 1454. Springer, Singapore. https://doi.org/10.1007/978-981-16-7502-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7502-7_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7501-0

  • Online ISBN: 978-981-16-7502-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics