Skip to main content

A New Contingency Axiomatic System for Rough Sets

  • Conference paper
  • First Online:
Data Mining and Big Data (DMBD 2021)

Abstract

Contingency logic is well-known to study the principles of reasoning involving necessity, possibility, contingency and non-contingency. However, there are some defects in existing contingency axiomatic systems. For instances, (NCR)\(_i\) is an infinite inference rule. The definition of accessibility relations and the corresponding axiom schema are very complex. To tackle these issues, a new contingency axiomatic system is proposed in this paper. Firstly, a new concise accessibility relation is defined for the axiomatic system; Then, two simpler axiom schemas of the axiomatic system are designed to replace the axiom schema K. This is helpful to prove the soundness and completeness theorems for the axiomatic system. Finally, rough sets can be perfectly formalized by our proposed axiomatic system. Theoretical analysis proves that a complete formal system is achieved. In addition, the concepts of “precise” or “rough” of rough sets can be described without the help of semantics functions of metalanguage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\triangle \)” is a logical symbol.

  2. 2.

    \(\Box \)” is a logical symbol.

  3. 3.

    \(\varLambda \) is S-inconsistent iff there are \(\alpha _1\),...,\(\alpha _n\in \varLambda \) such that \(\vdash _S\lnot (\alpha _1\wedge ...\wedge \alpha _n)\). The idea is that in S you can prove that a contradiction arises from the members of \(\varLambda \), where S may be the systems K,D,T,S4 and S5, and so on [1].

References

  1. Hughes, G.E., Cresswell, M.J., Cresswell, M.M.: A New Introduction to Modal Logic, Psychology Press, East Sussex (1996)

    Google Scholar 

  2. Humberstone, L.: The logic of non-contingency. Notre Dame J. Formal Log. 36(2), 214–229 (1995)

    Article  MathSciNet  Google Scholar 

  3. Cresswell, M.J.: Necessity and contingency. Studia Log. 47(2), 145–149 (1988)

    Google Scholar 

  4. Pizzi, C.: Bimodal fragments of contingency logics. Log. Anal. 224, 425–438 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Pizzi, C.: Relative contingency and bimodality. Log. Univ. 7(1), 113–123 (2013)

    Article  MathSciNet  Google Scholar 

  6. Humberstone, L.: Zolin and pizzi: defining necessity from noncontingency. Erkenntnis 78(6), 1275–1302 (2013)

    Article  MathSciNet  Google Scholar 

  7. Montgomery, H., Routley, R.: Contingency and non-contingency bases for normal modal logics. Log. Anal. 9(35/36), 318–328 (1966)

    MathSciNet  MATH  Google Scholar 

  8. Steven, T.K.: Minimal non-contingency logic. Notre Dame J. Formal Log. 36(2), 230–234 (1995)

    Google Scholar 

  9. Rosalie, I.: Uniform interpolation and sequent calculi in modal logic. Arch. Math. Log. 58(1-2), 155–181 (2019)

    Google Scholar 

  10. Manisha, J., Alexandre, M., Martins, M.A.: A fuzzy modal logic for fuzzy transition systems. Electron. Notes Theor. Comput. Sci. 348, 85–103 (2020)

    Google Scholar 

  11. Anantha, P., Ramanujam, R.: The monodic fragment of propositional term modal logic. Studia Log. 107(3), 533–557 (2019)

    Google Scholar 

  12. Montgomery, H., Routley, R.: Non-contingency axioms for s4 and s5. Log. Anal. 11(43), 422–424 (1968)

    MATH  Google Scholar 

  13. Montgomery, H., Routley, R.: Modalities in a sequence of normal noncontingency modal systems. Log. Anal. 12(47), 225–227 (1969)

    MATH  Google Scholar 

  14. Pizzi, C.: Necessity and relative contingency. Studia Log. 85(3), 395–410 (2007)

    Article  MathSciNet  Google Scholar 

  15. Fan, J., Wang, Y., Van Ditmarsch, H.: Contingency and knowing whether. Rev. Symb. Log. 8(1), 75–107 (2015)

    Article  MathSciNet  Google Scholar 

  16. Pawlak, Z.: Rough logic. Bull. Polish Acad. Sci. Tech. Sci. 35, 253–258 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Zdzisław, P.: Rough sets: Theoretical aspects of reasoning about data. Springer Science & Business Media (2012)

    Google Scholar 

  18. Salem, S.B., Naouali, S., Chtourou, Z.: A rough set based algorithm for updating the modes in categorical clustering. Int. J. Mach. Learn. Cybern. 12(7), 2069–2090 (2021). https://doi.org/10.1007/s13042-021-01293-w

    Article  Google Scholar 

  19. Hamed, A., Sobhy, A., Nassar, H.: Distributed approach for computing rough set approximations of big incomplete information systems. Inform. Sci. 547, 427–449 (2021)

    Article  MathSciNet  Google Scholar 

  20. Wang, C., Shi, Y., Fan, X., Shao, M.: Attribute reduction based on k-nearest neighborhood rough sets. Int. J. Approximate Reason. 106, 18–31 (2019)

    Article  MathSciNet  Google Scholar 

  21. Jihong, W., Hongmei, C., Zhong, Y., Tianrui, L., Xiaoling, Y., BinBin, S.: A novel hybrid feature selection method considering feature interaction in neighborhood rough set. Knowledge-Based Systems, p. 107167 (2021)

    Google Scholar 

  22. Wang, H., Wang, W., Xiao, S., Cui, Z., Minyang, X., Zhou, X.: Improving artificial bee colony algorithm using a new neighborhood selection mechanism. Inform. Sci. 527, 227–240 (2020)

    Article  MathSciNet  Google Scholar 

  23. Wang, H., et al.: Artificial bee colony algorithm based on knowledge fusion. Complex Intell. Syst. 7(3), 1139–1152 (2020). https://doi.org/10.1007/s40747-020-00171-2

    Article  Google Scholar 

  24. Yao, Y.: Three-way granular computing, rough sets, and formal concept analysis. Int. J. Approximate Reason. 116, 106–125 (2020)

    Article  MathSciNet  Google Scholar 

  25. Orlowska, E.: A logic of indiscernibility relations. Symposium on Computation Theory, pp. 177–186. Berlin, Heidelberg (1984)

    Google Scholar 

  26. Helena, R., Andrzej, S.: Rough concepts logic. Symposium on Computation Theory, p. 288–297. Berlin, Heidelberg (1985)

    Google Scholar 

  27. Qing, L., Lan, L.: Rough logic and its reasoning. Transactions on Computational Science II, pp. 84–99. Berlin, Heidelberg (2008)

    Google Scholar 

  28. Düntsch, I.: A logic for rough sets. Theor. Comput. Sci. 179(1–2), 427–436 (1997)

    Article  MathSciNet  Google Scholar 

  29. Yao, Y.Y., Tsau, Y.L.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–119 (1996)

    Google Scholar 

Download references

Acknowledgment

This work is partially supported by the Science and Technology Project of Jiangxi Provincial Education Department (Nos. GJJ161109, GJJ201917 and GJJ190941), and the National Science Foundation of China (Nos. 61763032 and 61562061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, S., Deng, S., Wang, H., Li, M. (2021). A New Contingency Axiomatic System for Rough Sets. In: Tan, Y., Shi, Y., Zomaya, A., Yan, H., Cai, J. (eds) Data Mining and Big Data. DMBD 2021. Communications in Computer and Information Science, vol 1454. Springer, Singapore. https://doi.org/10.1007/978-981-16-7502-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7502-7_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7501-0

  • Online ISBN: 978-981-16-7502-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics