Skip to main content

A Conceptual Model to Identify Illegal Activities on the Bitcoin System

  • Conference paper
  • First Online:
Advances in Cyber Security (ACeS 2021)

Abstract

Soon after its inception in 2009, Bitcoin was used as a tool by malicious attackers who exploit its pseudo-anonymity to establish untraceable frauds. Recently, several Bitcoin users and institutions have confirmed that thousands of Bitcoins were lost due to the failure to implement a fraud detection system, causing significant damage to individuals or institutions and resulting in bankruptcy. The anonymous nature of the Bitcoin system makes it a desirable option for malicious people to carry out illegal activities, making it difficult for law enforcement to detect suspicious behavior and making the current fraud detection techniques impractical. Thus, identifying illegal activities becomes an important factor to protect the reputation of the Bitcoin system. In this paper, we propose a model to identify illegal transactions in the Bitcoin system. Firstly, we collect illegal addresses for data labeling purposes from different sources such as online public bitcoin forums and related datasets from previous papers and then verify them with a raw Bitcoin dataset. Secondly, we introduce new types of features by using a time-based approach to segment transactions into time slices over a period in addition to the most meaningful features of the prior studies. Thirdly, we evaluate the proposed model on five popular supervised classifiers (KNN, SVM, RF, XGB, and KNN). Finally, this paper considers the problem of class imbalance and attained better optimization when using an adaptive oversampling technique (ADASYN). Results obtained from this study demonstrate that RF and XGB outperform KNN, SVM, and NN in terms of detection rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Hashedi, K.G., Magalingam, P.: Financial fraud detection applying data mining techniques: a comprehensive review from 2009 to 2019. Comput. Sci. Rev. 40, 100402 (2021). https://doi.org/10.1016/j.cosrev.2021.100402

    Article  Google Scholar 

  2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  3. Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in Bitcoin-like digital cash systems. IEEE Commun. Surv. Tutorials (2018)

    Google Scholar 

  4. Irwin, A.S., Turner, A.B.: Illicit Bitcoin transactions: challenges in getting to the who, what, when and where. J. Money Laundering Control (2018)

    Google Scholar 

  5. Hill, A.: Bitcoin: Is Cryptocurrency Viable? (2014)

    Google Scholar 

  6. Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)

    Google Scholar 

  7. Horst, L.V.D., Choo, K.K.R., Le-Khac, N.A.: Process memory investigation of the Bitcoin clients electrum and Bitcoin core. IEEE Access 5, 22385–22398 (2017). https://doi.org/10.1109/ACCESS.2017.2759766

    Article  Google Scholar 

  8. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous online marketplace. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 213–224. ACM (2013)

    Google Scholar 

  9. Baravalle, A., Lopez, M.S., Lee, S.W.: Mining the dark web: drugs and fake ids. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 350–356 (2016)

    Google Scholar 

  10. Monamo, P., Marivate, V., Twala, B.: Unsupervised learning for robust Bitcoin fraud detection. In: Information Security for South Africa (ISSA), pp. 129–134. IEEE (2016)

    Google Scholar 

  11. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks in the Bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_5

    Chapter  Google Scholar 

  12. Walch, A.: The Bitcoin blockchain as financial market infrastructure: a consideration of operational risk. NYUJ Legis. Pub. Pol’y 18, 837 (2015)

    Google Scholar 

  13. Tu, K.V., Meredith, M.W.: Rethinking virtual currency regulation in the Bitcoin age. Wash. L. Rev. 90, 271 (2015)

    Google Scholar 

  14. Zambre, D., Shah, A.: Analysis of Bitcoin network dataset for fraud. Unpublished Report (2013)

    Google Scholar 

  15. Jobse, F.: Detecting suspicious behavior in the Bitcoin network. Tilburg University (2017)

    Google Scholar 

  16. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of Bitcoin transactions. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 16–32. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_2

    Chapter  Google Scholar 

  17. Marcin, S.I.: Bitcoin live: scalable system for detecting Bitcoin network behaviors in real time (2015)

    Google Scholar 

  18. Li, Y., Cai, Y., Tian, H., Xue, G., Zheng, Z.: Identifying illicit addresses in Bitcoin network. In: Zheng, Z., Dai, H.-N., Fu, X., Chen, B. (eds.) BlockSys 2020. CCIS, vol. 1267, pp. 99–111. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-9213-3_8

    Chapter  Google Scholar 

  19. Pham, T., Lee, S.: Anomaly detection in Bitcoin network using unsupervised learning methods. arXiv preprint arXiv:1611.03941 (2016)

  20. Pham, T., Lee, S.: Anomaly Detection in the Bitcoin System-A Network Perspective. arXiv preprint arXiv:1611.03942 (2016)

  21. Monamo, P.M., Marivate, V., Twala, B.: A multifaceted approach to Bitcoin fraud detection: global and local outliers. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 188–194 IEEE (2016)

    Google Scholar 

  22. Bitcoin Abuse: Bitcoin Abuse Database (2021). Accessed 1 July 2021

    Google Scholar 

  23. Turner, A., Irwin, A.S.M.: Bitcoin transactions: a digital discovery of illicit activity on the blockchain. J. Finan. Crime (2018)

    Google Scholar 

  24. Nerurkar, P., Bhirud, S., Patel, D., Ludinard, R., Busnel, Y., Kumari, S.: Supervised learning model for Identifying illegal activities in Bitcoin. Appl. Intell. 51(6), 3824–3843 (2021)

    Article  Google Scholar 

  25. Yang, L., Dong, X., Xing, S., Zheng, J., Gu, X., Song, X.: An abnormal transaction detection mechanim on Bitcoin. In: 2019 International Conference on Networking and Network Applications (NaNA), pp. 452–457 IEEE (2019)

    Google Scholar 

  26. Zarpelão, B.B., Miani, R.S., Rajarajan, M.: Detection of Bitcoin-based botnets using a one-class classifier. In: Blazy, O., Yeun, C.Y. (eds.) WISTP 2018. LNCS, vol. 11469, pp. 174–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20074-9_13

    Chapter  Google Scholar 

  27. Liao, K., Zhao, Z., Doupé, A., Ahn, G.-J.: Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin. In: 2016 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–13. IEEE (2016)

    Google Scholar 

  28. Zhang, Z., Zhou, T., Xie, Z.: BITSCOPE: scaling Bitcoin address deanonymization using multi-resolution clustering. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)

    Google Scholar 

  29. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting Bitcoin Ponzi schemes. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84. IEEE (2018)

    Google Scholar 

  30. Lin, Y.-J., Wu, P.-W., Hsu, C.-H., Tu, I.-P., Liao, S.-W.: An evaluation of Bitcoin address classification based on transaction history summarization. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 302–310. IEEE (2019)

    Google Scholar 

  31. Janze, C.: Are cryptocurrencies criminals best friends? Examining the co-evolution of Bitcoin and darknet markets (2017)

    Google Scholar 

  32. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–238 (2015)

    Article  Google Scholar 

  33. Conti, M., Kumar, S., Lal, C., Ruj, S.: A survey on security and privacy issues of Bitcoin. IEEE Commun. Surv. Tutorials (2018)

    Google Scholar 

  34. Yin, H.S., Vatrapu, R.: A first estimation of the proportion of cybercriminal entities in the Bitcoin ecosystem using supervised machine learning. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 3690–3699. IEEE (2017)

    Google Scholar 

  35. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of WEIS, p. 11 (2013)

    Google Scholar 

  36. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding attack in Bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

  37. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  38. Bahack, L.: Theoretical Bitcoin Attacks with less than Half of the Computational Power (draft). arXiv preprint arXiv:1312.7013 (2013)

  39. Rosenfeld, M.: Analysis of Bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980 (2011)

  40. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and mitigation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2017)

    Article  Google Scholar 

  41. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bitcoin. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 906–917. ACM (2012)

    Google Scholar 

  42. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18

    Chapter  Google Scholar 

  43. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł: On the malleability of Bitcoin transactions. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 1–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_1

    Chapter  Google Scholar 

  44. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against Bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) Financial Cryptography and Data Security, pp. 72–86. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_6

    Chapter  Google Scholar 

  45. Kondor, D., Csabai, I., Szüle, J., Pósfai, M., Vattay, G.: Inferring the interplay between network structure and market effects in Bitcoin. New J. Phys. 16(12), 125003 (2014)

    Google Scholar 

  46. Neo4j Graph Platform: Neo4j Graph Platform – The Leader in Graph Databases (2021). Accessed 1 June 2021

    Google Scholar 

  47. Magalingam, P., Rao, A., Davis, S.: Identifying a criminal’s network of trust. In: 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems, pp. 309–316 (2014)

    Google Scholar 

  48. Paquet-Clouston, M., Haslhofer, B., Dupont, B.: Ransomware payments in the Bitcoin ecosystem. J. Cybersecur. 5(1), tyz003 (2019)

    Google Scholar 

  49. Weber, M., et al.: Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  50. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Detecting credit card fraud using periodic features. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 208–213. IEEE (2015)

    Google Scholar 

  51. Bahnsen, A.C., Aouada, D., Stojanovic, A., Ottersten, B.: Feature engineering strategies for credit card fraud detection. Expert Syst. Appl. 51, 134–142 (2016)

    Article  Google Scholar 

  52. Lim, W.-Y., Sachan, A., Thing, V.: Conditional weighted transaction aggregation for credit card fraud detection. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics 2014. IAICT, vol. 433, pp. 3–16. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44952-3_1

    Chapter  Google Scholar 

  53. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)

    Google Scholar 

  54. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  55. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

    Article  Google Scholar 

  56. Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  57. Lall, U., Sharma, A.: A nearest neighbor bootstrap for resampling hydrologic time series. Water Resour. Res. 32(3), 679–693 (1996)

    Article  Google Scholar 

  58. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  59. Devi, D., Biswas, S.K., Purkayastha, B.: A boosting based adaptive oversampling technique for treatment of class imbalance. In: 2019 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7 (2019)

    Google Scholar 

  60. Subudhi, S., Panigrahi, S.: Effect of class imbalanceness in detecting automobile insurance fraud. In: 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), pp. 528–531. IEEE (2018)

    Google Scholar 

  61. Haibo, H., Yang, B., Garcia, E.A., Shutao, L.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Ministry of Higher Education (MOHE), Government of Malaysia and Research Management Centre, Universiti Teknologi Malaysia for supporting this work through the Tier-2 Grant, vote number Q.K130000.2656.16J48 and Registration Proposal No: PY/2019/00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritheega Magalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Hashedi, K.G., Magalingam, P., Maarop, N., Samy, G.N., Manaf, A.A. (2021). A Conceptual Model to Identify Illegal Activities on the Bitcoin System. In: Abdullah, N., Manickam, S., Anbar, M. (eds) Advances in Cyber Security. ACeS 2021. Communications in Computer and Information Science, vol 1487. Springer, Singapore. https://doi.org/10.1007/978-981-16-8059-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8059-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8058-8

  • Online ISBN: 978-981-16-8059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics