Abstract
Cryptography is the art of presenting secret information under code obfuscation. This can be achieved by various algorithms which convert human readable text into non-legible text. This paper presents a cryptosystem that adopts the Gamma function and tabular modeling to carry out both the encryption and decryption using two common keys namely Primary Common Key (PCK) and Secondary Common Key (SCK). The encryption outputs two ciphers when a message P and PCK is given as input. The value Key VK is generated by Value Key Generator (VKG). Cipher \(C_1\) uses modular arithmetic followed by Gamma function and Cipher \(C_2\) uses Gamma function in Gamma Cryptor Module (GCM). The result of VKG is given to GCM. During decryption, it requires both the ciphers \(C_1 C_2\) and a Value key VK for generating the plaintext back.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mathur, S., Gupta, D., Goar, V., Kuri, M.: Analysis and design of enhanced RSA algorithm to improve the security. In: 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–5. IEEE (2017)
Mallouli, F., Hellal, A., Saeed, N.S., Alzahrani, F.A.: A survey on cryptography: comparative study between RSA vs ECC algorithms, and RSA vs El-Gamal algorithms. In: 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp. 173–176. IEEE (2019)
Amadori, A., Pintore, F., Sala, M.: On the discrete logarithm problem for prime-field elliptic curves. Finite Fields Appl. 51, 168–182 (2018)
Indrayani, R., Ferdiansyah, P., Satria, D.A.: Effectiveness comparison of the AES and 3DES cryptography methods on email text messages. In: International Conference on Information and Communications Technology (ICOIACT), pp. 66–69. IEEE (2019)
Buchanan, W.J., Li, S., Asif, R.: Lightweight cryptography methods. J. Cyber Secur. Technol. 1(3–4), 187–201 (2017)
Dooley, J.F.: History of Cryptography and Cryptanalysis: Codes, Ciphers, and Their Algorithms. Springer, Heidelberg (2018)
Abusukhon, A., Anwar, M.N., Mohammad, Z., Alghannam, B.: A hybrid network security algorithm based on Diffie Hellman and Text-to-Image Encryption algorithm. J. Discret. Math. Sci. Cryptogr. 22(1), 65–81 (2019)
Ali, S., et al.: An efficient cryptographic technique using modified Diffie-Hellman in wireless sensor networks. Int. J. Distrib. Sens. Netw. 16(6) (2020)
Das, A.K., Das, A., Kar, N.: An approach towards encrypting paired digits using dynamic programming and Diffie-Hellman key exchange. In: Saha, A., Kar, N., Deb, S. (eds.) ICCISIoT 2019. CCIS, vol. 1192, pp. 170–181. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3666-3_15
Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: a distributed zero knowledge proof system. In: 27th USENIX Security Symposium, pp. 675–692 (2018)
Major, W., Buchanan, W.J., Ahmad, J.: An authentication protocol based on chaos and zero knowledge proof. Nonlinear Dyn. 99(4), 3065–3087 (2020). https://doi.org/10.1007/s11071-020-05463-3
Joshi, P., Verma, M., Verma, P.R.: Secure authentication approach using Diffie-Hellman key exchange algorithm for WSN. In: International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 527–532. IEEE (2015)
Harn, L., Mehta, M., Hsin, W.J.: Integrating Diffie-Hellman key exchange into the digital signature algorithm (DSA). IEEE Commun. Lett. 8(3), 198–200 (2004)
Artin, E.: The Gamma Function. Courier Dover Publications, New York (2015)
Karatsuba, E.A.: On the asymptotic representation of the Euler gamma function by Ramanujan. J. Comput. Appl. Math. 135(2), 225–240 (2001)
Lanczos, C.: A precision approximation of the gamma function. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1(1), 86–96 (1964)
Mortici, C.: A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 402(2), 405–410 (2013)
Horadam, A.F.: A generalized Fibonacci sequence. Am. Math. Mon. 68(5), 455–459 (1961)
DeCarlo, L.T.: On the meaning and use of kurtosis. Psychol. Methods 2(3), 292 (1997)
Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. J. R. Stat. Soc. Ser. D (Stat.) 33(4), 391–399 (1984)
Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. John Wiley & Sons, Hoboken (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Das, A.K., Kar, N. (2021). g-EoN: A Non-salient Approach Towards Encryption Using Gamma Function \(\varGamma \Big (-\frac{\alpha }{\beta }\Big ) = -\frac{\beta }{\alpha }\, \varGamma \Big (\frac{\beta -\alpha }{\beta }\Big )\). In: Abdullah, N., Manickam, S., Anbar, M. (eds) Advances in Cyber Security. ACeS 2021. Communications in Computer and Information Science, vol 1487. Springer, Singapore. https://doi.org/10.1007/978-981-16-8059-5_6
Download citation
DOI: https://doi.org/10.1007/978-981-16-8059-5_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-8058-8
Online ISBN: 978-981-16-8059-5
eBook Packages: Computer ScienceComputer Science (R0)