Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1500))

Included in the following conference series:

Abstract

This paper proposes a method to detect the fake objects in images by combining You Only Look Once (YOLO) to define the objects and image post-processing techniques to authenticate the forgery manipulations on objects. YOLO is developed in 2016 and improved in different versions. For the object detection in images, authors used the first version of YOLO. In the proposed method, YOLO is firstly used to identify objects on the image and these objects are removed from the background to reduce computational complexity. The boundaries of objects will be then detected, and their sharpness distribution are calculated as the traces for determining the object tampering. The objects with higher sharpness at the boundaries will be compared the objects in the same group. If there is an object’s features similarity, there will be a copy-move object; otherwise, a spliced object. These steps are integrated into a neural network model trained by both spliced and copy-move image datasets. The combination of YOLO and the proposed neural network model has solved the problem of detecting fake objects with average accuracy of 95.3% for copy-move images and 93.8% for spliced images. The proposed method can be efficient not only for copy-move images and spliced images, but also for the mixed images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  2. Muzaffer, G., Ulutas, G., Ustubioglu, B.: Copy move forgery detection with quadtree decomposition segmentation. In: 2020 43rd International Conference on Telecommunications and Signal Processing (TSP), pp. 208–211. IEEE (2020)

    Google Scholar 

  3. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy–move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  4. Babu, S.T., Rao, C.S.: Statistical features based optimized technique for copy move forgery detection. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE (2020)

    Google Scholar 

  5. CoMoFoD. http://www.vcl.fer.hr/comofod/

  6. MICC_Copy-Move Forgery Detection and Localization |Image and Communication Laboratory. http://lci.micc.unifi.it/labd/2015/01/copymove-forgery-detection-and-localization/

  7. Rao, C., Tilak Babu, S.B.G.: Image authentication using Local Binary Pattern on the Low frequency components. In: Satapathy, S.C., Bheema Rao, N., Srinivas Kumar, S., Dharma Raj, C., Malleswara Rao, V., Sarma, G.V.K. (eds.) Microelectronics, Electromagnetics and Telecommunications. LNEE, vol. 372, pp. 529–537. Springer, New Delhi (2016). https://doi.org/10.1007/978-81-322-2728-1_49

    Chapter  Google Scholar 

  8. Koshy, L., PraylaShyry, S.: Copy-move forgery detection and performance analysis of feature detectors. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 0041–0045. IEEE (2020)

    Google Scholar 

  9. Chen, H., Yang, X., Lyu, Y.: Copy-move forgery detection based on keypoint clustering and similar neighborhood search algorithm. IEEE Access 8, 36863–36875 (2020)

    Article  Google Scholar 

  10. Muzaffer, G., Ulutas, G.: A new deep learning-based method to detection of copy-move forgery in digital images. In: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), pp. 1–4. IEEE (2019)

    Google Scholar 

  11. Ouyang, J., Liu, Y., Liao, M.: Copy-move forgery detection based on deep learning. In: 2017 10th International Congress on Image and Signal Processing, Biomedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2017)

    Google Scholar 

  12. Thakur, R., Rohilla, R.: Copy-move forgery detection using residuals and convolutional neural network framework: a novel approach. In: 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), pp. 561–564. IEEE (2019)

    Google Scholar 

  13. Abbas, M.N., Ansari, M.S., Asghar, M.N., Kanwal, N., O'Neill, T., Lee, B.: Lightweight deep learning model for detection of copy-move image forgery with post-processed attacks. In: 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000125–000130. IEEE (2021)

    Google Scholar 

  14. Le-Tien, T., Hanh, P.X., Pham-Ng-Quynh, N., Ho-Van, D.: A combination of super-resolution and deep learning approaches applied to image forgery detection. In: 2020 International Signal Processing, Communications and Engineering Management Conference (ISPCEM), pp. 244–249. IEEE (2020)

    Google Scholar 

  15. Ng, T.T., Chang, S.F., Sun, Q.: Blind detection of photomontage using higher order statistics. In: 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), vol. 5, p. V. IEEE (2004)

    Google Scholar 

  16. Ng, T.T., Chang, S.F.: A model for image splicing. In: 2004 International Conference on Image Processing, 2004, ICIP'04, vol. 2, pp. 1169–1172. IEEE (2004)

    Google Scholar 

  17. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions (2004)

    Google Scholar 

  18. Vinoth, S., Gopi, E.S.: Neural network modeling of color array filter for digital forgery detection using kernel LDA. Procedia Technol. 10, 498–504 (2013)

    Article  Google Scholar 

  19. Liu, Y., Zhu, X., Zhao, X., Cao, Y.: Adversarial learning for constrained image splicing detection and localization based on atrous convolution. IEEE Trans. Inf. Forensics Secur. 14(10), 2551–2566 (2019)

    Article  Google Scholar 

  20. Zhu, Y., Chen, C., Yan, G., Guo, Y., Dong, Y.: AR-Net: Adaptive attention and residual refinement network for copy-move forgery detection. IEEE Trans. Industr. Inf. 16(10), 6714–6723 (2020)

    Article  Google Scholar 

  21. Zhong, J.L., Pun, C.M.: An end-to-end dense-inceptionnet for image copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 15, 2134–2146 (2019)

    Article  Google Scholar 

  22. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Girshick, R.B.: Fast R-CNN (2015). CoRR, abs/1504.08083.

    Google Scholar 

  24. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)

    Article  Google Scholar 

  25. Bourdev, L., Malik, J.: Poselets: body part detectors trained using 3d human pose annotations. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1365–1372. IEEE (2009)

    Google Scholar 

  26. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  27. Vu, H.: Edge Detection. AI Academy Vietnam

    Google Scholar 

  28. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A sift-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)

    Article  Google Scholar 

  29. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577–584 (2001)

    Google Scholar 

  30. Hsu, Y.F., Chang, S.F.: Detecting image splicing using geometry invariants and camera characteristics consistency. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 549–552. IEEE (2006)

    Google Scholar 

  31. Battiato, S., Messina, G.: Digital forgery estimation into DCT domain: a critical analysis. In: Proceedings of the First ACM Workshop on Multimedia in Forensics, pp. 37–42 (2009)

    Google Scholar 

  32. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)

    Article  Google Scholar 

  33. Pandey, R.C., Singh, S.K., Shukla, K. K., Agrawal, R.: Fast and robust passive copy-move forgery detection using SURF and SIFT image features. In: 2014 9th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE (2014)

    Google Scholar 

  34. Ryu, Seung-Jin., Lee, Min-Jeong., Lee, Heung-Kyu.: Detection of copy-rotate-move forgery using Zernike moments. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) information hiding, pp. 51–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kha-Tu Huynh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, KT., Ly, TN., Le-Tien, T. (2021). A Deep Learning-Based Method for Image Tampering Detection. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2021. Communications in Computer and Information Science, vol 1500. Springer, Singapore. https://doi.org/10.1007/978-981-16-8062-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8062-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8061-8

  • Online ISBN: 978-981-16-8062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics