Skip to main content

1.8 V, 8-bit Integrated ADC and DAC in CMOS 180 nm for Bluetooth Low-Energy (BLE) System

  • Conference paper
  • First Online:
Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications

Abstract

This paper demonstrates the design of integrated 8-bit pipelined ADC and DAC for Bluetooth Low Energy (BLE) system. The op-amp has provided sufficient open-loop DC gain to guarantee the excellent performance of ADC. While the hybrid DAC, which has been partitioned equally into two sub-segments, i.e. current-steering and binary-weighted resistor architectures operated with low power consumption and maintained good performance. This design has been performed using Silterra 180 nm CMOS process technology with the supplied voltage of 1.8 V. The silicon area is 3.02 mm2. Post-layout simulation results exhibited the integrated ADC and DAC have integral non-linearity (INL) errors of −1.0/+0.5 LSB and −1.0/+1.0 LSB, respectively and consumed 39.6 mW for data conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, Y., et al.: A +8 dBm BLE/BT transceiver with automatically calibrated integrated RF bandpass filter and -58 dBc TX HD2. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 136–138. IEEE, San Francisco, California (2017). https://doi.org/10.1109/ISSCC.2017.7870298

  2. Prummel, J., et al.: A 10 mW Bluetooth Low-Energy transceiver with on-chip matching. In: IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers, pp. 238–239. IEEE, San Francisco, California (2015). https://doi.org/10.1109/ISSCC.2015.7063014

  3. Ghittori, N., Vigna, A., Malcovati, P., D’Amico, S., Baschirotto, A.: 1.2-V low-power multi-mode DAC+filter blocks for reconfigurable (WLAN/UMTS, WLAN/Bluetooth) transmitters. IEEE J. Solid-State Circuits 41(9), 1970–1982 (2006). https://doi.org/10.1109/JSSC.2006.880602

    Article  Google Scholar 

  4. Zhou, D., et al.: A 13-bit 260MS/s power-efficient pipeline ADC using a current-reuse technique and interstage gain and nonlinearity errors calibration. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(9), 3373–3383 (2019). https://doi.org/10.1109/TCSI.2019.2925743

    Article  Google Scholar 

  5. Liu, M., Li, D., Zhu, Z.: A dual-supply two-stage CMOS op-amp for high-speed pipeline ADCs application. IEEE Trans. Circuits Syst. II: Express Briefs 67(4), 650–654 (2020). https://doi.org/10.1109/TCSII.2019.2926133

    Article  Google Scholar 

  6. Chou, F.T., Chen, Z.Y., Hung, C.C.: A 10-bit 250 MS/s low-glitch binary-weighted digital-to-analog converter. In: Int. Syst. Chip Conf. (SOCC), pp. 231–235. IEEE, Las Vegas, NV, USA (2014). https://doi.org/10.1109/SOCC.2014.6948933

  7. Esmaili, A., Babazadeh, H.: A foreground self-calibration technique for high-resolution switched-current R-2R digital-to-analog converters. Circuits Syst. Signal Process. 39(5), 2307–2327 (2019). https://doi.org/10.1007/s00034-019-01284-x

    Article  Google Scholar 

  8. Chou, Fang-Ting., Hung, Chung-Chih.: Glitch energy reduction and SFDR enhancement techniques for low-power binary-weighted current-steering DAC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2015). https://doi.org/10.1109/TVLSI.2015.2503727

    Article  Google Scholar 

  9. Kim, S.-N., Kim, M.-R., Sung, B.-R.-S., Kang, H.-W., Cho, M.-H., Ryu, S.-T.: A SUC-based full-binary 6-bit 3.1 GS/s 17.7 mW current-steering DAC in 0.038 mm2. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 794–798 (2016). https://doi.org/10.1109/TVLSI.2015.2412657

    Article  Google Scholar 

  10. Lai, L., Li, X., Fu, Y., Liu, Y., Yang, H.: Demystifying and mitigating code-dependent switching distortions in current-steering DACs. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(1), 68–81 (2019). https://doi.org/10.1109/TCSI.2018.2866819

    Article  Google Scholar 

  11. Zawawi, M.A.M., Teoh, S.S., Abdullah, N.B., Mohd Sazali, M.I.S. (eds.): 10th International Conference on Robotics, Vision, Signal Processing and Power Applications. LNEE, vol. 547. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6447-1

    Book  Google Scholar 

  12. Rahman, L.F., Rudham, F.A., Reaz, M.B.I., Marufuzzaman, M.: The evolution of digital-to-analog converter. In: International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), pp. 151–154. IEEE, Putrajaya, Malaysia (2017). https://doi.org/10.1109/ICAEES.2016.7888028

  13. Feng, W., Lu, T., Wang, Z.: Analysis and design of fully differential gain-boosted op-amp for 14-bit 100 MS/s pipelined analog-to-digital converter. In: 5th International Joint Conference on INC, IMS, and IDC, pp. 66–69. IEEE, Seoul, Korea (2009). https://doi.org/10.1109/NCM.2009.133

  14. Yewale, S., Gamad, R.S.: Analysis and design of high gain low power fully differential gain-boosted folded-cascode op-amp with settling time optimization. Int. J. Eng. Res. Appl. 1(3), 666–670 (2017). https://doi.org/10.1109/EDSSC.2005.1635302

    Article  Google Scholar 

  15. Mukahar, N.B., Ruslan, S.H.B.: A 93.36 dB, 161 MHz gain improved CMOS OTA for a 16 bit pipeline analog to digital converter. In: International Conference on Science and Social Research (CSSR), pp. 1325–1328. IEEE, Kuala Lumpur, Malaysia (2010). https://doi.org/10.1109/CSSR.2010.5773744

  16. Idros, N., Abdul Aziz, Z.A., Rajendran, J.: A 1-mm2 CMOS pipelined ADC with integrated folded cascode operational amplifier. Microelectron. Int. 37(4), 205–213 (2020). https://doi.org/10.1108/MI-05-2020-0030

    Article  Google Scholar 

  17. Huang, J.L, Ong, C. K., Cheng, K. T.: A BIST scheme for on-chip ADC and DAC testing. In: Proceedings Design, Automation and Test in Europe Conference and Exhibition 2000 (Cat. No. PR00537), pp. 216–220. IEEE, Paris, France (2000). https://doi.org/10.1109/DATE.2000.840041

  18. Jiang, H., Olleta, B., Chen, D., Geiger, L.,R.: Testing high resolution ADCs using low rsolution/accuracy deterministic dynamic element matched DACs. In: 2004 IEEE International Conference on Test, pp. 1379–1388. IEEE, Charlotte, NC, USA (2004). https://doi.org/10.1109/iscas.2004.1328346

  19. Jiang, W., Agrawal, V.D.: Built-in self-calibration of on-chip DAC and ADC. In: 2008 IEEE International Conference on Test, pp. 1–10. IEEE, Santa Clara, CA, USA (2008). https://doi.org/10.1109/TEST.2008.4700638

Download references

Acknowledgement

This project was supported by CREST with grant number PCEDEC/6050415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhamizah Idros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Idros, N., Rosli, A., Aziz, Z.A.A., Rajendran, J., Marzuki, A. (2022). 1.8 V, 8-bit Integrated ADC and DAC in CMOS 180 nm for Bluetooth Low-Energy (BLE) System. In: Mahyuddin, N.M., Mat Noor, N.R., Mat Sakim, H.A. (eds) Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications. Lecture Notes in Electrical Engineering, vol 829. Springer, Singapore. https://doi.org/10.1007/978-981-16-8129-5_50

Download citation

Publish with us

Policies and ethics