Skip to main content

A Differential Evolution Algorithm for Wind Farm Layout Optimization Using a New Bilevel Programming Model

  • Conference paper
  • First Online:
Genetic and Evolutionary Computing (ICGEC 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 833))

Included in the following conference series:

  • 660 Accesses

Abstract

The wind farm layout optimization (WFLO) is still regarded as an NP-hard problem involving a lot of constraints owing to the multiple wake effects. In order to efficiently cope with the problem, both a new optimization model and an improved differential evolution algorithm are developed. First of all, a new bilevel programming model is presented for the problems of this kind. Different from other existing models, the bilevel programming problem aims at the maximum profit at upper level as well as the maximum power output at lower level. Then, in the wind farm (WF) areas given, wind turbines (WTs) are placed at different locations and the wake effect among different wind turbines is taken into account. In addition, by designing a hybrid mutation operator, an improved differential evolution algorithm (IDE) is proposed for dealing with the bilevel programming model. Finally, the comparative analysis of maximal power output among the proposed algorithm and other four advanced methods is conducted under two wind conditions collected from commercial wind farms, and the results demonstrate that the proposed method is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GWEC. Global wind report (2021). https://gwec.net/global-wind-report-2021

  2. Fischetti, M., Pisinger, D.: Mathematical optimization and algorithms for offshore windfarm design: an overview. Bus. Inf. Syst. Eng. 61(4), 469–485 (2019). https://doi.org/10.1007/s12599-018-0538-0

    Article  Google Scholar 

  3. Mosetti, G., Poloni, C., Diviacco, B.: Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 51, 105–116 (1994). https://doi.org/10.1016/0167-6105(94)90080-9

    Article  Google Scholar 

  4. Sun, H.Y., Yang, H.X., Gao, X.X.: Investigation into spacing restriction and layout optimization of wind farm with multiple types of wind turbines. Energy 168, 637–650 (2019). https://doi.org/10.1016/j.energy.2018.11.073

    Article  Google Scholar 

  5. Wang, Y., Liu, H., Long, H., Zhang, Z.J., Yang, S.X.: Differential evolution with a new encoding mechanism for optimizing wind farm layout. IEEE Trans. Ind. Inf. 14(3), 1040–1054 (2018). https://doi.org/10.1109/TII.2017.2743761

    Article  Google Scholar 

  6. Song, M.X., Chen, K., Wang, J.: Three-dimensional wind turbine positioning using Gaussian particle swarm optimization with differential evolution. J. Wind Eng. Ind. Aerodyn. 172, 317–324 (2018). https://doi.org/10.1016/j.jweia.2017.10.032

    Article  Google Scholar 

  7. Grady, S.A., Hussaini, M.Y., Abdullah, M.M.: Placement of wind turbines using genetic algorithms. Renew. Energy 30, 259–270 (2005). https://doi.org/10.1016/j.renene.2004.05.007

    Article  Google Scholar 

  8. Chen, Y., Li, H., Jin, K., Song, Q.: Wind farm layout optimization using genetic algorithm with different hub height wind turbines. Energy Convers. Manage. 70, 56–65 (2013). https://doi.org/10.1016/j.enconman.2013.02.007

    Article  Google Scholar 

  9. Chen, K., Song, M.X., Zhang, X., Wang, S.F.: Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm. Renew. Energy 96, 676–686 (2016). https://doi.org/10.1016/j.renene.2016.05.018

    Article  Google Scholar 

  10. Long, H., Li, P., Gu, W.: A data-driven evolutionary algorithm for wind farm layout optimization. Energy 208, 1–14 (2020). https://doi.org/10.1016/j.energy.2020.118310

    Article  Google Scholar 

  11. Zhang, J.H., Jiang, Y.W.: Joint optimization of the number, type and layout of wind turbines for a new offshore wind farm. Renew. Sustain. Energy 12, 1–13 (2020). https://doi.org/10.1063/5.0020204

    Article  MathSciNet  Google Scholar 

  12. Long, H., Zhang, Z.J.: A two-echelon wind farm layout planning model. IEEE Trans. Sustain. Energy 6(3), 863–871 (2015). https://doi.org/10.1109/TSTE.2015.2415037

    Article  Google Scholar 

  13. Tian, L.L., Zhao, N., Wu, C.H.: Study on optimization of wind farm layout. Acta Energiae Solaris Sinica 35(3), 462–468 (2014). https://doi.org/10.3969/j.issn.0254-0096.2014.03.015

    Article  Google Scholar 

  14. Marmidis, G., Lazarou, S., Pyrgioti, E.: Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renew. Energy 33, 1455–1460 (2008). https://doi.org/10.1016/j.renene.2007.09.004

    Article  Google Scholar 

  15. Rivas, R.A., Clausen, G., Hansen, K.S., Jensen, L.E.: Solving the turbine positioning problem for large offshore wind farms by simulated annealing. Wind Eng. 33(3), 287–298 (2009)

    Article  Google Scholar 

  16. Feng, J., Shen, W.Z.: Solving the wind farm layout optimization problem using random search algorithm. Renew. Energy 78, 182–192 (2015). https://doi.org/10.1016/j.renene.2015.01.005

    Article  Google Scholar 

  17. Devibala, P., Rajendran, C.: Optimal micro-sitting of wind turbines in a wind park using particle swarm optimization algorithm. Int. J. Eng. CS & Tech. 2, 1–6 (2012)

    Article  Google Scholar 

  18. Eroglu, Y., Seçkiner, S.U.: Design of wind farm layout using ant colony algorithm. Renew. Energy 44, 53–62 (2012). https://doi.org/10.1016/j.renene.2011.12.013

    Article  Google Scholar 

  19. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  20. Zhang, J.Q., Sanderson, C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Article  Google Scholar 

  21. Wang, Y., Cai, Z.X.: Combining multi-objective optimization with differential evolution to solve constrained optimization problems. IEEE Trans. Evol. Comput. 16(1), 117–134 (2012). https://doi.org/10.1109/TEVC.2010.2093582

    Article  Google Scholar 

  22. Zhang, W.Q., Wang, Y., Yang, Y., Gen, M.: Hybrid multi-objective evolutionary algorithm based on differential evolution for flow shop scheduling problems. Comput. Ind. Eng. 130, 661–670 (2019). https://doi.org/10.1016/j.cie.2019.03.019

    Article  Google Scholar 

  23. Zhang, Q., Zou, D.X., Duan, N., Shen, X.: An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem. Appl. Soft Comput. J. 78, 641–669 (2019). https://doi.org/10.1016/j.asoc.2019.03.019

    Article  Google Scholar 

  24. Adamuthe, A.C., Patil, J.T.: Differential evolution algorithm for optimizing virtual machine placement problem in cloud computing. Int. J. Intel. Syst. Appl. 7, 58–65 (2018). https://doi.org/10.5815/ijisa.2018.07.06

    Article  Google Scholar 

  25. Shakoor, R., Hassan, M.Y., Raheem, A., Wu, Y.K.: Wake effect modeling: a review of wind farm layout optimization using Jensen’s model. Renew. Sustain. Energy Rev. 58, 1048–1059 (2016)

    Article  Google Scholar 

  26. Wagner, M., Day, J., Neumann, F.: A fast and effective local search algorithm for optimizing the placement of wind turbines. Renew. Energy 51, 64–70 (2013). https://doi.org/10.1016/j.renene.2012.09.008

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China under Grant No. 61966030, the Natural Science Foundation of Qinghai Province of China under Grant No. 2018-ZJ-901 and the Key Laboratory of LoT of Qinghai province of china under Grant 2020-ZJ-Y16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hecheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Li, H., Shen, Y. (2022). A Differential Evolution Algorithm for Wind Farm Layout Optimization Using a New Bilevel Programming Model. In: Chu, SC., Lin, J.CW., Li, J., Pan, JS. (eds) Genetic and Evolutionary Computing. ICGEC 2021. Lecture Notes in Electrical Engineering, vol 833. Springer, Singapore. https://doi.org/10.1007/978-981-16-8430-2_53

Download citation

Publish with us

Policies and ethics