Skip to main content

Depth Image Super-resolution via Two-Branch Network

  • Conference paper
  • First Online:
Cognitive Systems and Information Processing (ICCSIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1515))

Included in the following conference series:

  • 1211 Accesses

Abstract

With the continuous development of sensors, a number of inexpensive and effective depth cameras have shown up, which have greatly contributed to the development of autonomous driving and 3D reconstruction technologies. However, the depth images captured by low-cost depth cameras are low-resolution, which is difficult to meet the needs of practical applications. We propose a two-branch network to achieve depth map super-resolution with high-resolution guidance image, which can be viewed as a prior to guide the low-resolution depth map to restore the missing high-frequency details of structures. To emphasize the guidance role of high-resolution images, we use spatially-variant kernels based on the guidance feature map to replace the original convolution kernels. In addition, in order to extract the feature maps of the depth images more effectively, we add the channel attention mechanism between convolution layers. Our network is trained end-to-end, supporting various sizes of input images because the network backbone uses full convolution and no fully connected layers. The proposal model is trained only on a certain dataset under three super-resolution factors and utilized directly on other datasets without fine-tuning. We show the effectiveness of our model by comparing it with state-of-art methods.

National Key Research and Development Program of China under Grant 2018AAA0103001.

National Natural Science Foundation of China (Grants No. U1813208, 62173319, 62063006).

Guangdong Basic and Applied Basic Research Foundation (2020B1515120054).

Shenzhen Fundamental Research Program (JCYJ20200109115610172).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1691–1696 (2012)

    Google Scholar 

  2. Qu, Y., Ou, Y.: LEUGAN: low-light image enhancement by unsupervised generative attentional networks. arXiv preprint arXiv:2012.13322 (2020)

  3. Qu, Y., Chen, K., Liu, C., et al.: UMLE: unsupervised multi-discriminator network for low light enhancement. arXiv preprint arXiv:2012.13177 (2020)

  4. Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., Liu, Y.: Real-time geometry, Albedo, and motion reconstruction using a single RGB-D camera. ACM Trans. Graph. 36(4), 1 (2017). Article 44a

    Google Scholar 

  5. Zollhöfer, M., Nießner, M., Izadi, S., et al.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33(4), 1–12 (2014). Article 156

    Google Scholar 

  6. Kopf, J., Cohen, M.F., Lischinski, D., et al.: Joint bilateral upsampling. ACM Trans. Graph. 26(3), 96 (2007)

    Article  Google Scholar 

  7. Yang, Q., Yang, R., Davis, J., et al.: Spatial-depth super resolution for range images. In: Proceedings of 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 18–23 June 2007 (2007)

    Google Scholar 

  8. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  9. Diebel, J., Thrun, S.: An application of Markov random fields to range sensing. In: NIPS (2005)

    Google Scholar 

  10. Park, J., Kim, H., Tai, Y.W., Brown, M., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: ICCV, pp. 1623–1630 (2011)

    Google Scholar 

  11. Ferstl, D., Reinbacher, C., Ranftl, R., Rüther, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: ICCV, pp. 993–1000 (2013)

    Google Scholar 

  12. Mac Aodha, O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 71–84. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_6

    Chapter  Google Scholar 

  13. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  14. Dong, C., Deng, Y., Loy, C.C., et al.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile (2015)

    Google Scholar 

  15. Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: Proceedings of IEEE International Conference on Computer Vision, ICCV 2013, Sydney, Australia (2013)

    Google Scholar 

  16. Ren, J.S., Xu, L., Yan, Q., et al.: Shepard convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems, Montreal, Quebec, Canada, 7–12 December 2015 (2015)

    Google Scholar 

  17. Hui, T.-W., Loy, C.C., Tang, X.: Depth map super-resolution by deep multi-scale guidance. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 353–369. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_22

    Chapter  Google Scholar 

  18. Li, Y., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep joint image filtering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_10

    Chapter  Google Scholar 

  19. Li, Y., Huang, J.B., Ahuja, N., Yang, M.H.: Joint image filtering with deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1909–1923 (2019)

    Article  Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  21. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  22. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  23. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  24. Lu, S., Ren, X., Liu, F.: Depth enhancement via low-rank matrix completion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  25. Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz, J.: Pixel-adaptive convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11166–11175 (2019)

    Google Scholar 

  26. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846 (1998)

    Google Scholar 

  27. Qu, Y., Ou, Y., Xiong, R.: Low illumination enhancement for object detection in self-driving. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), vol. 2019, pp. 1738–1743 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Ou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Xiong, R., Ou, Y., Wang, L., Liu, C. (2022). Depth Image Super-resolution via Two-Branch Network. In: Sun, F., Hu, D., Wermter, S., Yang, L., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2021. Communications in Computer and Information Science, vol 1515. Springer, Singapore. https://doi.org/10.1007/978-981-16-9247-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9247-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9246-8

  • Online ISBN: 978-981-16-9247-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics