Abstract
Semantic segmentation is widely used in robot perception and can be used for various subsequent tasks. Depth information has been proven to be a useful clue in the semantic segmentation of RGB-D images for providing a geometric counterpart to the RGB representation. At the same time, considering the importance of object boundaries in the robot’s perception process, it is very necessary to add attention to the boundaries of the objects in the semantic segmentation model.
In this paper, we propose Efficient Boundary-Aware Network (EBANet) which relies on both RGB and depth images as input. We design a boundary attention branch to extract more boundary features of objects in the scene and generate boundary labels for supervision by a Canny edge detector. We also adopt a hybrid loss function fusing Cross-Entropy (CE) and structural similarity (SSIM) loss to guide the network to learn the transformation between the input image and the ground truth at the pixel and patch level. We evaluate our proposed EBANet on the common RGB-D dataset NYUv2 and show that we reach the state-of-the-art performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, United States, pp. 431–440. IEEE Computer Society (2015)
Fu, J., et al.: Dual attention network for scene segmentation. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 3141–3149. IEEE Computer Society (2019)
He, J., Deng, Z., Qiao, Y.: Dynamic multi-scale filters for semantic segmentation. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, pp. 3561–3571. Institute of Electrical and Electronics Engineers Inc., United States (2019)
Fu, J., et al.: Adaptive context network for scene parsing. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, pp. 6747–6756. Institute of Electrical and Electronics Engineers Inc., United States (2019)
Cheng, B., et al.: SPGNet: semantic prediction guidance for scene parsing. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, pp. 5217–5227. Institute of Electrical and Electronics Engineers Inc., United States (2019)
Zhang, F., et al.: ACFNet: attentional class feature network for semantic segmentation. In: 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Republic of Korea, pp. 6797–6806. Institute of Electrical and Electronics Engineers Inc., United States (2019)
Lee, S., Park, S.J., Hong, K.S.: RDFNet: RGB-D multi-level residual feature fusion for indoor semantic segmentation. In: 16th IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, pp. 4990–4999. Institute of Electrical and Electronics Engineers Inc., United States (2017)
Wang, W., Neumann, U.: Depth-aware CNN for RGB-D segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_9
Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 4106–4115. IEEE Computer Society (2019)
Chen, Y., Mensink, T., Gavves, E.: 3D neighborhood convolution: learning depthaware features for RGB-D and RGB semantic segmentation. In: 7th International Conference on 3D Vision, 3DV 2019, Quebec, QC, Canada, pp. 173–182. Institute of Electrical and Electronics Engineers Inc., United States (2019)
He, Y., Chiu, W.C., Keuper, M., Fritz, M.: STD2P: RGBD semantic segmentation using spatio-temporal data-driven pooling. In: 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, United States, pp. 7158–7167. Institute of Electrical and Electronics Engineers Inc. (2017)
Li, Z., Gan, Y., Liang, X., Yu, Y., Cheng, H., Lin, L.: LSTM-CF: unifying context modeling and fusion with LSTMs for RGB-D scene labeling. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 541–557. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_34
Cheng, Y., Cai, R., Li, Z., Zhao, X., Huang, K.: Locality-sensitive deconvolution networks with gated fusion for RGB-D indoor semantic segmentation. In: 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, United States, pp. 1475–1483. Institute of Electrical and Electronics Engineers Inc. (2017)
Hung, S.W., Lo, S.Y., Hang, H.M.: Incorporating luminance, depth and color information by a fusion-based network for semantic segmentation. In: 26th IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, pp. 2374–2378. IEEE Computer Society (2019)
Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_14
Jiang, J., Zheng, L., Luo, F., Zhang, Z.: RedNet: residual encoder-decoder network for indoor RGB-D semantic segmentation. arXiv preprint arXiv:1806.01054 (2018)
Hu, X., Yang, K., Fei, L., Wang, K.: ACNet: attention based network to exploit complementary features for RGBD semantic segmentation. In: 26th IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, pp. 1440–1444. IEEE Computer Society (2019)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets v2: more deformable, better results. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 9300–9308. IEEE Computer Society (2019)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, United States, pp. 6154–6162. IEEE Computer Society (2018)
Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: 16th IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, pp. 5562–5570. Institute of Electrical and Electronics Engineers Inc., United States (2017)
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 6402–6411. IEEE Computer Society (2019)
Li, Z., Zhuang, Y., Zhang, X., Yu, G., Sun, J.: COCO instance segmentation challenges 2018: winner (2018). http://presentations.cocodataset.org/ECCV18/COCO18-Detect-Megvii.pdf
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 7471–7481. IEEE Computer Society (2019)
Chen, X., et al.: Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 561–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_33
Seichter, D., Köhler, M., Lewandowski, B., Wengefeld, T., Gross, H.: M Efficient RGB-D semantic segmentation for indoor scene analysis. arXiv preprint arXiv:2011.06961
Kong, S., Fowlkes, C.: Recurrent scene parsing with perspective understanding in the loop. In: 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, United States, pp. 956–965. IEEE Computer Society (2018)
Lin, D., Chen, G., Cohen-Or, D., Heng, P.A., Huang, H.: Cascaded feature network for semantic segmentation of RGB-D images. In: 16th IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, pp. 1320–1328. Institute of Electrical and Electronics Engineers Inc., United States (2017)
Chen, X., Lin, K., Qian, C., Zeng, G., Li, H.: 3D sketch-aware semantic scene completion via semi-supervised structure prior. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Virtual, Online, United States, pp. 4192–4201. IEEE Computer Society (2020)
Valada, A., Mohan, R., Burgard, W.: Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. Vision 128(5), 1239–1285 (2020)
Fooladgar, F., Kasaei, S.: Multi-modal attention-based fusion model for semantic segmentation of RGB-depth images. arXiv preprint arXiv:1912.11691 (2019)
Zhong, Y., Dai, Y., Li, H.: 3D geometry-aware semantic labeling of outdoor street scenes. In: 24th International Conference on Pattern Recognition, ICPR 2018, Beijing, China, pp. 2343–2349. Institute of Electrical and Electronics Engineers Inc., United States (2018)
Xing, Y., Wang, J., Chen, X., Zeng, G.: 2.5D convolution for RGB-D semantic segmentation. In: 26th IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, pp. 1410–1414. IEEE Computer Society (2019)
Xing, Y., Wang, J., Zeng, G.: Malleable 2.5D convolution: learning receptive fields along the depth-axis for RGB-D scene parsing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 555–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_33
Chen, L., Lin, Z., Wang, Z., Yang, Y.L., Cheng, M.M.: Spatial information guided convolution for real-time RGBD semantic segmentation. IEEE Trans. Image Process. 30(2021), 2313–2324 (2021)
Chen, Y., Mensink, T., Gavves, E.: 3D neighborhood convolution: learning depth-aware features for RGB-D and RGB semantic segmentation. In: 7th International Conference on 3D Vision, 3DV 2019, Quebec, QC, Canada, pp. 173–182. Institute of Electrical and Electronics Engineers Inc., United States (2019)
Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United States, pp. 510–519. IEEE Computer Society (2019)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, United States, pp. 7794–7803. IEEE Computer Society (2018)
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a discriminative feature network for semantic segmentation. In: 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, United States, pp. 1857–1866. IEEE Computer Society (2018)
Chen, X., Qi, D., Shen, J.: Boundary-aware network for fast and high-accuracy portrait segmentation. arXiv preprint arXiv:1901.03814
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, United states, pp. 770–778. IEEE Computer Society (2016)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, United states, pp. 6230–6239. Institute of Electrical and Electronics Engineers Inc., United States (2017)
Orsic, M., Kreso, I., Bevandic, P., Segvic, S.: In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images. In: 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, United states, pp. 12599–12608. IEEE Computer Society (2019)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, no. 2003, pp. 1398–1402 (2003)
Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: 15th IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, pp. 2650–2658. Institute of Electrical and Electronics Engineers Inc., United States (2015)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, no. 2019, pp. 8024–8035 (2019)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, United states (2015)
Acknowledgment
This work was supported by Major Project of the New Generation of Artificial Intelligence (No. 2018AAA0102900).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, R., Jia, Q., Shen, Y., Huang, Z., Chen, G., Fei, J. (2022). EBANet: Efficient Boundary-Aware Network for RGB-D Semantic Segmentation. In: Sun, F., Hu, D., Wermter, S., Yang, L., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2021. Communications in Computer and Information Science, vol 1515. Springer, Singapore. https://doi.org/10.1007/978-981-16-9247-5_16
Download citation
DOI: https://doi.org/10.1007/978-981-16-9247-5_16
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-9246-8
Online ISBN: 978-981-16-9247-5
eBook Packages: Computer ScienceComputer Science (R0)