Skip to main content

A Necessary Condition for Industrial Internet of Things Sustainability

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2021)

Abstract

In the paper cybersecurity of Industrial Internet of Things (IIoT) is compared with SCADA-based Industrial Control Systems (ICS), that leverage Purdue Enterprise Reference Architecture (PERA) 5-leveled model for network segmentation. The main difference of SCADA-based ICS and IIoT systems is an openness of control, process and physical layers – in SCADA-based ICS every “thing” secured physically, that is called safety, while in IIoT-based systems both safety and security – that is called cybersecurity – must be provided. Then authors provide a typical IIoT architecture, where communication between nodes of Internet of Things (IoT) field is coming through an Zero-Trusted environment like the Internet is. This architecture needs new approache or approaches for securing communications. The paper is aimed to show that anonymity systems and anonymity theory could help with this cybersecurity challenge. Based on the anonymity degree measuring a path sustainability entropy mearing between two arbitrary nodes is proposed. For providing cybersecurity sustainability of production workflows on such architecture a necessary condition is described in a theorem. In the end of the paper this necessity criteria theorem is proven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giang, N.G., Im, J., Kim, D., Jung, M., Kastner, W.: Integrating the EPCIS and building automation system into the internet of things: a lightweight and interoperable approach. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 6(1), 56–73 (2015)

    Google Scholar 

  2. Kim, H.: 5G core network security issues and attack classification from network protocol perspective. J. Internet Serv. Inf. Secur. (JISIS) 10(2), 1–15 (2020)

    Google Scholar 

  3. Angin, P., Anisi, M., Göksel, F., Gürsoy, C., Büyükgülcü, A.: AgriLoRa: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 11(4), 77–96 (2020)

    Google Scholar 

  4. Suleiman, H., Hamdan, M.: Adaptive probabilistic model for energy-efficient distance-based clustering in WSNs (Adapt-P): a LEACH-based analytical study. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 12(3), 65–86 (2021)

    Google Scholar 

  5. Nkenyereye, L., Abhi Tama, B., Park, Y., Rhee, K.: A fine-grained privacy preserving protocol over attribute based access control for VANETs. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 6(2), 98–112 (2015)

    Google Scholar 

  6. Rose, S., Oliver, B., Mitchell, S., Connelly, S.: Zero Trust Architecture. NIST Special Publication 800-207 (2020)

    Google Scholar 

  7. Vasil’ev, Yu.S., Zegzhda, P.D., Zegzhda, D.P.: Ensuring the safety of automated process control systems at hydropower facilities. Izv. Ross. Akad. Nauk. Energetika 3, 49–61 (2016)

    Google Scholar 

  8. Lin, S., Crawford, M., Mellor, S.: The Industrial Internet of Things Volume G1: Reference Architecture. https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf. Accessed 19 July 2021

  9. Robles, T., et al.: An IoT based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 6(1), 4–23 (2015)

    Google Scholar 

  10. Zegzhda, P.D., Zegzhda, D.P., Nikolskiy, A.V.: Using graph theory for cloud system security modeling. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 309–318. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-8_26

    Chapter  Google Scholar 

  11. Fedorchenko, A., Kotenko, I., Chechulin, A.: Integrated repository of security information for network security evaluation. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 6(2), 41–57 (2015)

    Google Scholar 

  12. Vasil’ev, Yu.S., Zegzhda, D.P., Poltavtseva, M.A.: Problems of security in digital production and its resistance to cyber threats. Autom. Control Comput. Sci. 52(8), 1090–1100 (2018)

    Google Scholar 

  13. Ye, J., Ding, Y., Xiong, X., Wu, S.: Dynamic model for anonymity measurement based on information entropy. J. Internet Serv. Inf. Secur. (JISIS) 4(2), 27–37 (2014)

    Google Scholar 

  14. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  15. Hasuo, I., Kawabe, Y.: Probabilistic anonymity via coalgebraic simulations. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 379–394. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_26

    Chapter  Google Scholar 

  16. Ohkubo, M., Abe, M.: A length-invariant hybrid mix. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 178–191. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_14

    Chapter  Google Scholar 

  17. Ross, M., Hannes, T., Jara, A.: Baseline Security Recommendations for IoT in the context of Critical Information Infrastructures (2017). https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot. https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot/at_download/fullReport. Accessed 21 July 2021

  18. Anada, H.: Decentralized multi-authority anonymous authentication for global identities with non-interactive proofs. J. Internet Serv. Inf. Secur. (JISIS) 10(4), 23–37 (2020)

    Google Scholar 

  19. Alizadeh, M., Andersson, K., Schelen, O.: A survey of secure internet of things in relation to blockchain. J. Internet Serv. Inf. Secur. (JISIS) 10(3), 47–75 (2020)

    Google Scholar 

Download references

Acknowledgement

The reported study was funded by Russian Ministry of Science (information security), project number 20/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Zegzhda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dakhnovich, A., Moskvin, D., Zegzhda, D. (2022). A Necessary Condition for Industrial Internet of Things Sustainability. In: You, I., Kim, H., Youn, TY., Palmieri, F., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2021. Communications in Computer and Information Science, vol 1544. Springer, Singapore. https://doi.org/10.1007/978-981-16-9576-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9576-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9575-9

  • Online ISBN: 978-981-16-9576-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics