Skip to main content

Novelty Detection-Based Automated Anomaly Identification via Optimized Deep Generative Model

  • Conference paper
  • First Online:
Big Data (BigData 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1496))

Included in the following conference series:

  • 1184 Accesses

Abstract

Novelty detection (ND) is a crucial task in machine learning to identify anomalies in the test data in some respects different from the training data. As an anomaly detection method, novelty detection only uses normal samples for model learning, which can well fit most of the natural scenes that the amount of abnormal samples is in fact strongly insufficient, such as network intrusion detection, industrial fault detection, and so on, due to the rareness of abnormal events or the high cost of abnormal samples collection. This paper proposes a reconstruction-based ND scheme by introducing an optimized deep generative model (ODGM), which combines the concept of Variational Auto-encoder (VAE) and the generative adversarial network (GAN) model jointly to efficiently and stably learn the essential characteristics from normal samples. A novelty index is established by combining signal reconstruction loss and feature loss between the original signal of the reconstructed signal based on the ODGM on normal samples for anomaly point identification in the test data. The effectiveness and superiority of the proposed model is validated and compared with other representative deep learning-based novelty detection models on two public data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    https://www.unb.ca/cic/datasets/nsl.html.

  3. 3.

    https://www.unb.ca/cic/datasets/nsl.html.

References

  1. Ming, Z.A., Tong, L., Rui, Z., et al.: Conditional Wasserstein generative adversarial network-gradient penalty-based approach to alleviating imbalanced data classification. Inf. Sci. 512, 1009–1023 (2020)

    Article  Google Scholar 

  2. Su, C.T., Hsiao, Y.H.: An evaluation of the robustness of MTS for imbalanced data. IEEE Trans. Knowl. Data Eng. 19(10), 1321–1332 (2007)

    Article  Google Scholar 

  3. Zhu, H., Liu, G., Zhou, M., et al.: Optimizing weighted extreme learning machines for imbalanced classification and application to credit card fraud detection. Neurocomputing 407, 50–62 (2020)

    Article  Google Scholar 

  4. Liu, J., Wang, J., Liu, X., et al.: Mwrspca: online fault monitoring based on moving window recursive sparse principal component analysis. J. Intell. Manufact. (2021). Early Access: https://doi.org/10.1007/S10845-10020-01721-10848

  5. Liu, J., Zhang, W., Ma, T., et al.: Toward security monitoring of industrial cyber-physical systems via hierarchically distributed intrusion detection. Exp. Syst. Appl., 158, 113578(113571–113523) (2020)

    Google Scholar 

  6. Liu, J., Zhang, W., Tang, Z., et al.: Adaptive intrusion detection via GA-GOGMM-based pattern learning with fuzzy rough set-based attribute selection. Exp. Syst. Appl. 139(1), 112845(112841–112817) (2020)

    Google Scholar 

  7. Domingues, R., Michiardi, P., Barlet, J., et al.: A comparative evaluation of novelty detection algorithms for discrete sequences. Artif. Intell. Rev. 53(2), 3787–3812 (2020)

    Article  Google Scholar 

  8. Liu, J., Liu, H., Gong, S., et al.: Automated cardiac segmentation of cross-modal medical images using unsupervised multi-domain adaptation and spatial neural attention structure. Med. Image Anal. 72(August), 102135 (2021)

    Article  Google Scholar 

  9. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  10. Pimentel, M., Clifton, D.A., Lei, C., et al.: A review of novelty detection. Signal Process. 99(6), 215–249 (2014)

    Article  Google Scholar 

  11. Ke, Y., Yao, C., Song, E., et al.: An early fault diagnosis method of common-rail injector based on improved CYCBD and hierarchical fluctuation dispersion entropy. Dig. Signal Proc. 114(4), 103049 (2021)

    Article  Google Scholar 

  12. Lei, A.C., Clifton. D.A., Watkinson, P., et al.: Identification of patient deterioration in vital-sign data using one-class support vector machines; In: Proceedings of The Federated Conference on Computer Science and Information Systems - Fedcsis 2011, Szczecin, Poland, 18–21 September 2011, Proceedings, F (2011)

    Google Scholar 

  13. Beghi, A., Cecchinato, L., Corazzol, C., Rampazzo, M., Simmini, F., Susto, G.A.: A one-class SVM based tool for machine learning novelty detection in HVAC chiller systems. IFAC Proceedings Volumes 47(3), 1953–1958 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.02382

    Article  Google Scholar 

  14. Jyothsna, V., Tirupati, A.R., Prasad, V.V.R., et al.: A review of anomaly based intrusion detection systems. Int. J. Comput. Appl. 28(7), 26–35 (2013)

    Google Scholar 

  15. Liu, J., He, J., Zhang, W., et al.: Anid-seokelm: adaptive network intrusion detection based on selective ensemble of kernel ELMS with random features. Knowl.-Based Syst. 177(1), 104–116 (2019)

    Article  Google Scholar 

  16. Hassani, A., Iranmanesh, A., Mansouri, N.: Text mining using nonnegative matrix factorization and latent semantic analysis. Neural Comput. Appl. 154, 107121 (2021)

    Google Scholar 

  17. Dieter, O., Benoit, D.F., Phlippe, B.: From one-class to two-class classification by incorporating expert knowledge: novelty detection in human behaviour - Sciencedirect. European J. Operat. Res. 282(3), 1011–1024 (2020)

    Article  Google Scholar 

  18. Clifton, L., Clifton, D.A., Zhang, Y., et al.: Probabilistic novelty detection with support vector machines. IEEE Trans. Reliab. 63(2), 455–467 (2014)

    Article  Google Scholar 

  19. Silva, S.R., Vieira, T., Martínez, D., Paiva, A.: On novelty detection for multi-class classification using non-linear metric learning. Exp. Syst. Appl. 167, 114193 (2021)

    Article  Google Scholar 

  20. Górski, J., Jaboński, A., Heesch, M., Dziendzikowski, M., Dworakowski, Z.: Comparison of novelty detection methods for detection of various rotary machinery faults Sensors 21(10), 3536 (2021)

    Google Scholar 

  21. Sun, K.: Information-theoretic data injection attacks on the smart grid. IEEE Trans. Smart Grid 11(2), 1276–1285 (2020)

    Article  Google Scholar 

  22. Vasilev, A., et al.: Q-space novelty detection with variational autoencoders. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds.) Computational Diffusion MRI. MV, pp. 113–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52893-5_10

    Chapter  Google Scholar 

  23. Han, M., Ozdenizci, O., Wang, Y., et al.: Disentangled adversarial autoencoder for subject-invariant physiological feature extraction. IEEE Signal Process. Lett. 27, 1565–1569 (2020)

    Article  Google Scholar 

  24. Simão, M., Neto, P., Gibaru, O.: Improving novelty detection with generative adversarial networks on hand gesture data. Neurocomputing 358, 437–445 (2019)

    Article  Google Scholar 

  25. Cho. J.A.A.S.: Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability. SNU Data Mining Center (2015)

    Google Scholar 

  26. Larsen, A.B.L., Snderby S.K.H.L.: Autoencoding Beyond Pixels Using A Learned Similarity Mmetric. ICML. (2016)

    Google Scholar 

  27. Xie, R., Jan, N.M., Hao, K., et al.: Supervised variational autoencoders for soft sensor modelling with missing data. IEEE Trans. Industr. Inf. 16(4), 2820–2828 (2020)

    Article  Google Scholar 

  28. Kim, Y., Alnujaim, I., Daegun, O.: Human activity classification based on point clouds measured by millimeter wave MIMO radar with deep recurrent neural networks. IEEE Sens. J. 21(12), 13522–13529 (2021)

    Article  Google Scholar 

  29. Liu, J., He, J., Xie, Y., et al.: Illumination-invariant flotation froth color measuring via Wasserstein distance-based cycleGAN with structure-preserving constraint. IEEE Trans. Cybern. 51(2), 2168–2275 (2021)

    Article  Google Scholar 

  30. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 3, 2672–2680 (2014)

    Google Scholar 

  31. Chen, X., Kingma, D. P, Salimans, T., et al.: Variat. Lossy Autoencoder (2016)

    Google Scholar 

  32. Wolterink, J.M., Leiner, T., Viergever, M.A., et al.: Generative adversarial networks for noise reduction in low-dose Ct. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  33. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) Information Processing In Medical Imaging, pp. 146–157. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  34. Tavallaee, M., Bagheri, E., Lu, W., et al.: A detailed analysis of the Kdd Cup 99 data set. In: Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, F, pp. 8–10 July 2009 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the national natural science foundation of China under grant No.61971188 and 61771492, in part by the Scientific Research Project of Hunan Education Department under grant No.19B364.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Liu, J., Wu, J., Zhou, J., Cai, M. (2022). Novelty Detection-Based Automated Anomaly Identification via Optimized Deep Generative Model. In: Liao, X., et al. Big Data. BigData 2021. Communications in Computer and Information Science, vol 1496. Springer, Singapore. https://doi.org/10.1007/978-981-16-9709-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9709-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9708-1

  • Online ISBN: 978-981-16-9709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics