Skip to main content

Active Malicious Accounts Detection with Multimodal Fusion Machine Learning Algorithm

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1557))

Included in the following conference series:

Abstract

This paper presents a multi-modal fusion machine learning algorithm to detect active malicious accounts in social networks. First, we use the XGBoost algorithm to rank features’ importance and reduce the impact of redundant features. Then, we use density detection algorithms to monitor malicious accounts according to the actual situation and the cooperative behavior of malicious accounts. Finally, we employ neural network algorithms to make secondary judgments on the results obtained in the previous step based on the periodic activity characteristics of active malicious accounts. We evaluate our approach on a real-world social network dataset. We have conducted experiments that demonstrate that the XGBoost algorithm aids in obtaining better results than other feature selection algorithms. Moreover, the comparison with other malicious account detection algorithms is also illustrated by extensive experiments. The result concludes that our proposed model is more efficient, more accurate, takes less time, and has a certain degree of scalability, thus performing well in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheikhi, F.: An efficient method for detection of fake accounts on the Instagram platform. Rev. D Intell. Artif. 34(4), 429–436 (2020)

    Google Scholar 

  2. Dover, Y., Goldenberg, J., Shapira, D.: Uncovering Social Network Structures Through Penetration Data. Social Science Electronic Publishing, Rochester (2009)

    Book  Google Scholar 

  3. Schuetz, S.W., Wei, J.: When your friends render you vulnerable: a social network analysis perspective on users’ vulnerability to socially engineered phishing attacks. In: ICIS 2019 (2019)

    Google Scholar 

  4. Stein, T., Chen, E., Mangla, K.: Facebook immune system. In: Proceedings of the 4th Workshop on Social Network Systems, pp. 1–8 (2011)

    Google Scholar 

  5. Lyu, C., et al.: Predictable model for detecting sybil attacks in mobile social networks. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE (2021)

    Google Scholar 

  6. Lobo, A., Mandekar, Y., Pundpal, S., Roy, B.: Detection of sybil attacks in social networks. In: Chellappan, S., Choo, K.-K., Phan, N. (eds.) CSoNet. LNCS, vol. 12575, pp. 366–377. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66046-8_30

    Chapter  Google Scholar 

  7. Xu, E.H.W., Hui, P.M.: Uncovering complex overlapping pattern of communities in large-scale social networks. Appl. Netw. Sci. 4(1), 1–16 (2019). https://doi.org/10.1007/s41109-019-0138-z

    Article  Google Scholar 

  8. Wang, G., Konolige, T., Wilson, C., Wang, X., Zheng, H., Zhao, B.Y.: You are how you click: clickstream analysis for sybil detection. In: 22nd USENIX Security Symposium ({USENIX}Security 13), pp. 241–256 (2013)

    Google Scholar 

  9. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: D-cube: dense-block detection interabyte-scale tensors. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 681–689 (2017)

    Google Scholar 

  10. Tang, B., Zhang, L.: Local preserving logistic i-relief for semi-supervised feature selection. Neurocomputing 399, 48–64 (2020)

    Article  Google Scholar 

  11. Chen, J., Tang, G.: A feature selection model to filter periodic variable stars with data-sensitive light-variable characteristics. J. Signal Process. Syst. 93(7), 733–744 (2021)

    Google Scholar 

  12. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  13. Selvalakshmi, B., Subramaniam, M.: Intelligent ontology based semantic information retrieval using feature selection and classification. Clust. Comput. 22(5), 12871–12881 (2018). https://doi.org/10.1007/s10586-018-1789-8

    Article  Google Scholar 

  14. Ndaoud, M.: Contributions to variable selection, clustering and statistical estimation in high dimension (2019)

    Google Scholar 

  15. Wang, X., Wang, Z., Zhang, Y., Jiang, X., Cai, Z.: Latent representation learning based autoencoder for unsupervised feature selection in hyper-spectral imagery. Multimedia Tools Appl. 1–15 (2021). https://doi.org/10.1007/s11042-020-10474-8

  16. Zhang, L., Huang, X., Zhou, W.: Logistic local hyperplane-relief: a feature weighting method for classification. Knowl.-Based Syst. 181, 104741 (2019)

    Article  Google Scholar 

  17. Klein, A., Melard, G.: Invertibility condition of the fisher information matrix of a varmax process and the tensor sylvester matrix. In: Working Papers ECARES (2020)

    Google Scholar 

  18. Kl, A., Xy, A., Hy, A., Jm, B., Pwb, C., Xc, A.: Rough set based semi-supervised feature selection via ensemble selector. Knowl.-Based Syst. 165, 282–296 (2019)

    Article  Google Scholar 

  19. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 1–45 (2016)

    Article  Google Scholar 

  20. Zeng, X., Zheng, H.: CS sparse k-means: An algorithm for cluster-specific feature selection in high-dimensional clustering (2019)

    Google Scholar 

  21. Jza, B., Hp, A., Jt, A., Ql, A.: Generalized refined composite multiscale fuzzy entropy and multi-cluster feature selection based intelligent fault diagnosis of rolling bearing. ISA Trans. (2021)

    Google Scholar 

  22. Li, K., Zhang, J., Fang, Z.: Communication emitter identification based on kernel semi-supervised discriminant analysis. In: 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS) (2019)

    Google Scholar 

  23. Benabdeslem, K., Hindawi, M.: Efficient semi-supervised feature selection: constraint, relevance, and redundancy. IEEE Trans. Knowl. Data Eng. 26(5), 1131–1143 (2014)

    Article  Google Scholar 

  24. Fang, H., Tang, P., Si, H.: Feature selections using minimal redundancy maximal relevance algorithm for human activity recognition in smarthome environments. J. Healthc. Eng. 2020(1), 1–13 (2020)

    Google Scholar 

  25. Rastogi, A., Mehrotra, M.: Opinion spam detection in online reviews. J. Inf. Knowl. Manag. 16(04), 1750036 (2017)

    Article  Google Scholar 

  26. Gayo-Avello, D., Brenes, D.J.: Overcoming spammers in Twitter-a taleof five algorithms (2010)

    Google Scholar 

  27. Velammal, B.L., Aarthy, N.: Improvised spam detection in twitter datausing lightweight detectors and classifiers. Int. J. Web-Based Learn. Teach. Technol. (IJWLTT) 16, 12–32 (2021)

    Article  Google Scholar 

  28. Mojiri, M.M., Ravanmehr, R.: Event detection in Twitter using multi timing chained windows. Comput. Inf. 39(6), 1336–1359 (2020)

    Google Scholar 

  29. Aswani, R., Kar, A.K., Ilavarasan, P.V.: Detection of spammers in Twitter marketing: a hybrid approach using social media analytics and bioinspired computing. Inf. Syst. Front. 20(3), 515–530 (2018)

    Article  Google Scholar 

  30. Youlve, C., Kaiyun, B., Jiangtian, C.: Credit decision system based on combination weight and extreme gradient boosting algorithm. J. Phys. Conf. Ser. 1955, 012081(2021)

    Article  Google Scholar 

  31. Shin, K., Hooi, B., Faloutsos, C.: M-zoom: fast dense-block detection in tensors with quality guarantees. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 264–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_17

    Chapter  Google Scholar 

  32. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10

    Chapter  MATH  Google Scholar 

  33. Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., Faloutsos, C.: A general suspiciousness metric for dense blocks in multimodal data. In: 2015 IEEE International Conference on Data Mining, pp. 781–786. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61976087 and Grant No. 62072170),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Zhang, D., Liang, W., Li, KC., Sukhija, N. (2022). Active Malicious Accounts Detection with Multimodal Fusion Machine Learning Algorithm. In: Wang, G., Choo, KK.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds) Ubiquitous Security. UbiSec 2021. Communications in Computer and Information Science, vol 1557. Springer, Singapore. https://doi.org/10.1007/978-981-19-0468-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0468-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0467-7

  • Online ISBN: 978-981-19-0468-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics