Skip to main content

Architecture and Security Analysis of Federated Learning-Based Automatic Modulation Classification

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1558))

Included in the following conference series:

  • 649 Accesses

Abstract

Conducting effective deep learning for automatic modulation recognition (AMR) plays a key role in non-cooperative communication systems. Applying federated learning (FL) to train AMR-oriented deep neural networks (ADNN) models is promising in achieving high recognition accuracy while maintaining the data privacy and saving precious wireless transmission bandwidth. In this paper, a FL architecture for ADNN training is presented, and four ADNN models are implemented under the FL architecture. Moreover, to evaluate the security vulnerability of the FL architecture facing ADNN models, multiple adversarial attacks are deployed at the clients to attack the central model training. Besides, label poisoning attacks targeting the FL architecture are investigated. To evaluate the efficiency and vulnerability of the FL architecture for ADNN training, a series of experiments are conducted on an open RF dataset. Results show that ADNN models can achieve high recognition accuracy. Moreover, data or label poisoning attacks are more effective in degrading recognition accuracy than adversarial attacks under the FL architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, Y., Xiong, N., Park, J.H., Ma, L., Liu, J.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  2. Guo, X., et al.: VERIFL: communication-efficient and fast verifiable aggregation for federated learning. IEEE Trans. Inf. Forensics Secur. 16, 1736–1751 (2021)

    Article  Google Scholar 

  3. O’Shea, T.J., Roy, T., Clancy, T.C.: Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 12(1), 168–179 (2018)

    Article  Google Scholar 

  4. Huynh-The, T., Hua, C.H., Pham, Q.V., Kim, D.S.: MCNet: an efficient CNN architecture for robust automatic modulation classification. IEEE Commun. Lett. 24(4), 811–815 (2020)

    Article  Google Scholar 

  5. Huang, S., Jiang, Y., Gao, Y., Feng, Z., Zhang, P.: Automatic modulation classification using contrastive fully convolutional network. IEEE Wirel. Commun. Lett. 8(4), 1044–1047 (2019)

    Article  Google Scholar 

  6. Wu, H., Li, Y., Zhou, L., Meng, J.: Convolutional neural network and multi-feature fusion for automatic modulation classification. Electron. Lett. 55(16), 895–897 (2019)

    Article  Google Scholar 

  7. Lin, Y., Tu, Y., Dou, Z.: An improved neural network pruning technology for automatic modulation classification in edge devices. IEEE Trans. Veh. Technol. 69(5), 5703–5706 (2020)

    Article  Google Scholar 

  8. Wang, Y., Yang, J., Liu, M., Gui, G.: LightAMC: lightweight automatic modulation classification via deep learning and compressive sensing. IEEE Trans. Veh. Technol. 69(3), 3491–3495 (2020)

    Article  Google Scholar 

  9. Zhang, Z., Luo, H., Wang, C., Gan, C., Xiang, Y.: Automatic modulation classification using CNN-LSTM based dual-stream structure. IEEE Trans. Veh. Technol. 69(11), 13521–13531 (2020)

    Article  Google Scholar 

  10. Njoku, J.N., Morocho-Cayamcela, M.E., Lim, W.: CGDNet: efficient hybrid deep learning model for robust automatic modulation recognition. IEEE Netw. Lett. 3(2), 47–51 (2021)

    Article  Google Scholar 

  11. Liu, Y., Liu, Y., Yang, C.: Modulation recognition with graph convolutional network. IEEE Wirel. Commun. Lett. 9(5), 624–627 (2020)

    Article  MathSciNet  Google Scholar 

  12. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  14. Kurakin, A., Goodfellow, I., Bengio, S., et al.: Adversarial examples in the physical world (2016)

    Google Scholar 

  15. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  16. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  17. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  18. Seo, J., Park, S., Kang, J.: Adversarial, yet friendly signal design for secured wireless communication. In: 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7 (2021)

    Google Scholar 

  19. Flowers, B., Buehrer, R.M., Headley, W.C.: Evaluating adversarial evasion attacks in the context of wireless communications. IEEE Trans. Inf. Forensics Secur. 15, 1102–1113 (2020)

    Article  Google Scholar 

  20. Lin, Y., Zhao, H., Tu, Y., Mao, S., Dou, Z.: Threats of adversarial attacks in DNN-based modulation recognition. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 2469–2478 (2020)

    Google Scholar 

  21. Lin, Y., Zhao, H., Ma, X., Tu, Y., Wang, M.: Adversarial attacks in modulation recognition with convolutional neural networks. IEEE Trans. Reliab. 70(1), 389–401 (2021)

    Article  Google Scholar 

  22. Roy, D., Mukherjee, T., Chatterjee, M., Blasch, E., Pasiliao, E.: RFAL: adversarial learning for RF transmitter identification and classification. IEEE Trans. Cogn. Commun. Netw. 6(2), 783–801 (2020)

    Article  Google Scholar 

  23. Shi, Y., Davaslioglu, K., Sagduyu, Y.E.: Generative adversarial network in the air: deep adversarial learning for wireless signal spoofing. IEEE Trans. Cogn. Commun. Netw. 7(1), 294–303 (2021)

    Article  Google Scholar 

  24. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  25. Shafahi, A., et al.: Poison frogs! targeted clean-label poisoning attacks on neural networks. arXiv preprint arXiv:1804.00792 (2018)

  26. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

  27. Shi, J., Zhao, H., Wang, M., Tian, Q.: Signal recognition based on federated learning. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1105–1110 (2020)

    Google Scholar 

  28. O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks. In: Jayne, C., Iliadis, L. (eds.) EANN 2016. CCIS, vol. 629, pp. 213–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44188-7_16

    Chapter  Google Scholar 

  29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  30. Ma, M.: Multimedia emergency event extraction and modeling based on object detection and Bi-LSTM network. In: 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), pp. 574–580 (2021)

    Google Scholar 

  31. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: ICASSP 2015–2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianglin Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Wang, C., Jiao, X., Duan, Q., Hu, Y. (2022). Architecture and Security Analysis of Federated Learning-Based Automatic Modulation Classification. In: Cao, C., Zhang, Y., Hong, Y., Wang, D. (eds) Frontiers in Cyber Security. FCS 2021. Communications in Computer and Information Science, vol 1558. Springer, Singapore. https://doi.org/10.1007/978-981-19-0523-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0523-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0522-3

  • Online ISBN: 978-981-19-0523-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics