Skip to main content

A Survey on Privacy-Preserving Deep Learning with Differential Privacy

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1563))

Included in the following conference series:

  • 1158 Accesses

Abstract

Deep learning has been increasingly applied in a wide variety of domains and has achieved remarkable results. Generally, a large amount of data is needed to train a deep learning model. The data might contain sensitive information, leading to the risk of privacy leakage in the process of model training and model application. As a privacy definition with strict mathematical guarantee, differential privacy has gained great attention and has been widely studied in recent years. However, applying differential privacy to deep learning still faces a big challenge to reduce the impact on model accuracy. In this paper, we first analyze the privacy threats that exist in deep learning from the perspective of privacy attacks, including membership inference attacks and reconstruction attacks. We also introduce some basic theories necessary to apply differential privacy to deep learning. Second, to summarize how existing works apply differential privacy to deep learning, we divide perturbations into four categories based on different perturbation stages of deep learning with differential privacy: input perturbation, parameter perturbation, objective function perturbation, and output perturbation. Finally, the challenges and future research directions on deep learning with differential privacy are summarized.

This work was supported in part by the National Natural Science Foundation of China under Grant 61672106, and in part by the Natural Science Foundation of Beijing, China under Grant L192023 and in part by the project of Scientific research fund of Beijing Information Science and Technology University of under 5029923412.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The European General Data Protection Regulation (GDPR). https://gdpr-info.eu/. Accessed 9 July 2021

  2. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  3. Bu, Z., Dong, J., Long, Q., Su, W.J.: Deep learning with gaussian differential privacy. Harvard Data Sci. Rev. 2020(23) (2020)

    Google Scholar 

  4. Cai, Y., Zhang, S., Xia, H., Fan, Y., Zhang, H.: A privacy-preserving scheme for interactive messaging over online social networks. IEEE Internet Things J. 7, 6817–6827 (2020)

    Google Scholar 

  5. Cai, Y., Zhang, H., Fang, Y.: A conditional privacy protection scheme based on ring signcryption for vehicular ad hoc networks. IEEE Internet Things J. 8, 647–656 (2020)

    Google Scholar 

  6. Chamikara, M., Bertok, P., Khalil, I., Liu, D., Camtepe, S.: Local differential privacy for deep learning (2019)

    Google Scholar 

  7. Deng, L., Yu, D.: Deep learning: methods and applications. Foundations Trends Sig. Processing 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  8. Du, B., Xiong, W., Wu, J., Zhang, L., Zhang, L., Tao, D.: Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans. Cybern. 47(4), 1017–1027 (2016)

    Article  Google Scholar 

  9. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Differential privacy. In: The Science of Quantitative Information Flow. ISC, pp. 433–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-319-96131-6_23

    Chapter  Google Scholar 

  10. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 715–724 (2010)

    Google Scholar 

  11. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Dwork, C., Rothblum, G.N.: Concentrated differential privacy. arXiv preprint arXiv:1603.01887 (2016)

  13. Fanti, G., Pihur, V., Erlingsson, Ú.: Building a RAPPOR with the unknown: privacy-preserving learning of associations and data dictionaries. arXiv preprint arXiv:1503.01214 (2015)

  14. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  15. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In: 23rd USENIX Security Symposium (USENIX Security 14), pp. 17–32 (2014)

    Google Scholar 

  16. Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 265–273 (2008)

    Google Scholar 

  17. Gong, Y., Lu, N., Zhang, J.: Application of deep learning fusion algorithm in natural language processing in emotional semantic analysis. Concurrency Comput. Pract. Experience 31(10), e4779 (2019)

    Article  Google Scholar 

  18. Guest, D., Cranmer, K., Whiteson, D.: Deep learning and its application to LHC physics. Annu. Rev. Nucl. Part. Sci. 68, 161–181 (2018)

    Article  Google Scholar 

  19. Gui, G., Huang, H., Song, Y., Sari, H.: Deep learning for an effective nonorthogonal multiple access scheme. IEEE Trans. Veh. Technol. 67(9), 8440–8450 (2018)

    Article  Google Scholar 

  20. Hao, X., Zhang, G., Ma, S.: Deep learning. Int. J. Semant. Comput. 10(03), 417–439 (2016)

    Article  Google Scholar 

  21. Hinton, G.E.: Deep belief networks. Scholarpedia 4(5), 5947 (2009)

    Article  Google Scholar 

  22. Huang, H., Song, Y., Yang, J., Gui, G., Adachi, F.: Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh. Technol. 68(3), 3027–3032 (2019)

    Article  Google Scholar 

  23. Irolla, P., Chtel, G.: Demystifying the membership inference attack. In: 2019 12th CMI Conference on Cybersecurity and Privacy (CMI) (2020)

    Google Scholar 

  24. Kairouz, P., Oh, S., Viswanath, P.: The composition theorem for differential privacy. IEEE Trans. Inf. Theor. (2017)

    Google Scholar 

  25. Ketkar, N.: Convolutional neural networks. In: Deep Learning with Python, pp. 61–76. Apress, Berkeley, CA (2017). https://doi.org/10.1007/978-1-4842-2766-4_5

    Chapter  Google Scholar 

  26. Koufogiannis, F., Han, S., Pappas, G.J.: Optimality of the Laplace mechanism in differential privacy. arXiv preprint arXiv:1504.00065 (2015)

  27. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)

    Google Scholar 

  28. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-Diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data (TKDD) 1(1), 3-es (2007)

    Google Scholar 

  29. McSherry, F.: Privacy integrated queries. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD) (2009)

    Google Scholar 

  30. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 94–103. IEEE (2007)

    Google Scholar 

  31. Novac, O.C., Novac, M., Gordan, C., Berczes, T., Bujdosó, G.: Comparative study of google android, apple iOS and Microsoft windows phone mobile operating systems. In: 2017 14th International Conference on Engineering of Modern Electric Systems (EMES), pp. 154–159. IEEE (2017)

    Google Scholar 

  32. Owusu-Agyemeng, K., Qin, Z., Xiong, H., Liu, Y., Zhuang, T., Qin, Z.: MSDP: multi-scheme privacy-preserving deep learning via differential privacy. Pers. Ubiquit. Comput., 1–13 (2021)

    Google Scholar 

  33. Phan, N., et al.: Heterogeneous gaussian mechanism: preserving differential privacy in deep learning with provable robustness. arXiv preprint arXiv:1906.01444 (2019)

  34. Phan, N., Wang, Y., Wu, X., Dou, D.: Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  35. Phan, N.H., Wu, X., Dou, D.: Preserving differential privacy in convolutional deep belief networks. Mach. Learn., 1681–1704 (2017). https://doi.org/10.1007/s10994-017-5656-2

  36. Phan, N., Wu, X., Hu, H., Dou, D.: Adaptive Laplace mechanism: differential privacy preservation in deep learning. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 385–394. IEEE (2017)

    Google Scholar 

  37. Revathi, M., Jeya, I.J.S., Deepa, S.N.: Deep learning-based soft computing model for image classification application. Soft. Comput. 24(24), 18411–18430 (2020). https://doi.org/10.1007/s00500-020-05048-7

    Article  Google Scholar 

  38. Sharma, S., Kumar, V.: Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning. Multimedia Tools Appl. 79, 1–28 (2020)

    Google Scholar 

  39. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  40. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  41. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 571–588 (2002)

    Article  MathSciNet  Google Scholar 

  42. Sweeney, L.: k-anonymity: a model for protecting privacy. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  43. Thambiraja, E., Ramesh, G., Umarani, D.R.: A survey on various most common encryption techniques. Int. J. Adv. Res. Comput. Sci. Software Eng. 2(7), 307–312 (2012)

    Google Scholar 

  44. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction APIs. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 601–618 (2016)

    Google Scholar 

  45. Wong, R.C.W., Fu, A.W.C., Wang, K., Yu, P.S., Pei, J.: Can the utility of anonymized data be used for privacy breaches? ACM Trans. Knowl. Discovery Data (TKDD) 5(3), 1–24 (2011)

    Article  Google Scholar 

  46. Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (\(\alpha \), k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 754–759 (2006)

    Google Scholar 

  47. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700 (2007)

    Google Scholar 

  48. Yang, R., Ma, X., Bai, X., Su, X.: Differential privacy images protection based on generative adversarial network. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1688–1695. IEEE (2020)

    Google Scholar 

  49. Yuan, D., Zhu, X., Wei, M., Ma, J.: Collaborative deep learning for medical image analysis with differential privacy. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

    Google Scholar 

  50. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression analysis under differential privacy. arXiv preprint arXiv:1208.0219 (2012)

  51. Zhang, S., Cai, Y., Xia, H.: A privacy-preserving interactive messaging scheme based on users credibility over online social networks. In: 2017 IEEE/CIC International Conference on Communications in China (ICCC) (2017)

    Google Scholar 

  52. Zhang, X., Ji, S., Wang, T.: Differentially private releasing via deep generative model (technical report). arXiv preprint arXiv:1801.01594 (2018)

  53. Zhao, J., Chen, Y., Zhang, W.: Differential privacy preservation in deep learning: challenges, opportunities and solutions. IEEE Access 7, 48901–48911 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Cai, Y., Zhang, M., Li, X., Fan, Y. (2022). A Survey on Privacy-Preserving Deep Learning with Differential Privacy. In: Tian, Y., Ma, T., Khan, M.K., Sheng, V.S., Pan, Z. (eds) Big Data and Security. ICBDS 2021. Communications in Computer and Information Science, vol 1563. Springer, Singapore. https://doi.org/10.1007/978-981-19-0852-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0852-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0851-4

  • Online ISBN: 978-981-19-0852-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics