Skip to main content

Application of Machine Learning Algorithm in Art Field – Taking Oil Painting as an Example

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1563))

Included in the following conference series:

Abstract

Oil painting production is a very time-consuming task. This article uses the current generation confrontation network popular in machine learning to transfer the style of images, and directly convert real-world images into high-quality oil paintings. In view of the current popular AnimeGAN and CartoonGAN generative confrontation networks, there are problems such as serious loss of details and color distortion in image migration. In this paper, by introducing SE-Residual Block (squeeze excitation residual block), comic face detection mechanism and optimizing the loss function, a new BicycleGAN is proposed to solve the problem of serious loss of details in the AnimeGAN migration image. By adding DSConv (distributed offset convolution), SceneryGAN is proposed to speed up the training speed and eliminate the ambiguous pixel blocks in the CartoonGAN migration image. The experimental results show that compared with AnimeGAN and CartoonGAN, the method in this paper has a significant improvement in training speed, comic image generation quality, and image local realism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, H., Zhang, G., Chen, G., Zhou, Q.: Research progress of image style transfer based on deep learning. In: Computer Engineering and Applications. Conference 2016. LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

    Google Scholar 

  2. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  3. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  4. Luan, F., Paris, S., Shechtman, E., et al.: Deep photo style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4990–4998 (2017)

    Google Scholar 

  5. Li, C., Wand, M.: Combining Markov random fields and convolutional neural networks for image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2479–2486 (2016)

    Google Scholar 

  6. Creswell, A., White, T., Dumoulin, V., et al.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  7. Chen, J., Liu, G., Chen, X.: AnimeGAN: a novel lightweight GAN for photo animation. In: Li, K., Li, W., Wang, H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 242–256. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5577-0_18

    Chapter  Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

Download references

Acknowledgements

Perspective and Anatomy (Excellent offline course project of Teaching Quality Project of Anhui Education Department, Item number: 2019kfkc160).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, K., Jiang, J. (2022). Application of Machine Learning Algorithm in Art Field – Taking Oil Painting as an Example. In: Tian, Y., Ma, T., Khan, M.K., Sheng, V.S., Pan, Z. (eds) Big Data and Security. ICBDS 2021. Communications in Computer and Information Science, vol 1563. Springer, Singapore. https://doi.org/10.1007/978-981-19-0852-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0852-1_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0851-4

  • Online ISBN: 978-981-19-0852-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics