Skip to main content

Vehicle Road Privacy Recommendation System Equipped with Markov Chain

  • Conference paper
  • First Online:
Big Data and Security (ICBDS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1563))

Included in the following conference series:

Abstract

Due to the development of in-vehicle network, location-based service has brought many conveniences to users. However, the user’s behavior of constantly updating the location of the service provider will cause the private information to be exposed to the attacker, thus threatening the user’s information security. Most of the current schemes ignore the differential protection of different road environments, which may lead to the abuse of privacy budget or be excluded by attackers according to actual environment analysis. We propose a method to protect the road privacy and meet the individual needs of users, and carry out the differentiated privacy protection based on road environment. First, we calculate the length of each road section, create a normalized matrix by a Markov model to describe the congestion degree of road sections, and filter the best route according to users’ privacy preferences. Then, according to the congestion degree of the road section, the sensitive circle range is defined for each query position of the recommended route, and the acceptable deviation range of the user virtual position is superimposed to protect the differential privacy. Experimental results show that, compared with the current methods, the proposed scheme can reasonably protect users’ privacy and obtain better service quality while satisfying users’ preferences and considering the surrounding road environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L., Liu, G., Yan, C., Jiang, C.: LORI: a learning-to-rank-based integration method of location recommendation. In: IEEE Transactions on Computational Social Systems, vol. 6, no. 3 (2019)

    Google Scholar 

  2. Wu, Z., Wang, R., Li, Q., Lian, X., Xu, G., Chen, E., Liu, X.: A location privacy-preserving system based on query range cover-up or location-based services. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 5 (2020)

    Google Scholar 

  3. Xu, C., Luo, L., Ding, Y., Zhao, G., Yu, S.: Personalized location privacy protection for location-based services in vehicular networks. In: IEEE Wireless Communications Letters, vol. 9, no. 10 (2020)

    Google Scholar 

  4. Li, B., Zhu, H., Xie, M.: Quantifying location privacy risks under heterogeneous correlations. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2021.3056152

  5. Zhou, L., Yu, L., Du, S., Zhu, H., Chen, C.: Achieving differentially private location privacy in edge-assistant connected vehicles. IEEE Internet of Things J. 6(3) (2019)

    Google Scholar 

  6. Zhu, X., Ayday, E., Vitenberg, R.: A privacy-preserving framework for outsourcing location-based services to the cloud. In: IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 1 (2021)

    Google Scholar 

  7. Sun, G. et al.: Location privacy preservation for mobile users in location-based services. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2925571

  8. Nosouhi, M.R., Sood, K., Yu, S., Grobler, M., Zhang, J.: PASPORT: a secure and private location proof generation and verification framework. In: IEEE Transactions on Computational Social Systems, vol. 7, no. 2 (2020)

    Google Scholar 

  9. Ma, C., Yan, Z., Chen, C.W.: SSPA-LBS: scalable and social-friendly privacy-aware location-based services. In: IEEE Transactions on Multimedia, vol. 21, no. 8 (2019)

    Google Scholar 

  10. Wu, H., LI, M., Zhang, H.: Enabling smart anonymity scheme for security collaborative enhancement in location-based services. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2911107

  11. Zhang, J., Wang, X., Yuan, Y., Ni, L.: RcDT: privacy preservation based on r-constrained dummy trajectory in mobile social network. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2927140

  12. He, X., Jin, R., Dai, H.: Leveraging spatial diversity for privacy-aware location-based services in mobile networks. In: IEEE Transactions on Information Forensics and Security, vol. 13, no. 6 (2018)

    Google Scholar 

  13. Albouq, S.S., et al.: A double obfuscation approach for protecting the privacy of iot location based applications. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2020.3009200

  14. Hu, Z., Liu, S., Chen, K.: Privacy-preserving location-based services query scheme against quantum attacks. In: IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 5 (2020)

    Google Scholar 

  15. Yang, X., Gao, L., Zheng, J., Wei, W.: Location privacy preservation mechanism for location-based service with incomplete location data. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2020.2995504

  16. Xu, J., Liu, L., Zhang, R., Xie, J., Duan, Q., Shi, L.: IFTS: a location privacy protection method based on initial and final trajectory segments. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2021.3052169

  17. Zheng, Y., Luo, J., Zhong, T.: Service recommendation middleware based on location privacy protection in VANET. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2020.2964422

  18. Fei, F., Li, S., Dai, H., Hu, C., Dou, W., Ni, Q.: A K-anonymity based schema for location privacy preservation. In: IEEE Transactions on Sustainable Computing, vol. 4, no. 2 (2019)

    Google Scholar 

  19. Huang, C., Wang, D., Tao, J., Mann, B.: On physical-social-aware localness inference by exploring big data from location-based services. In: IEEE Transactions on Big Data, vol. 6, no. 4 (2020)

    Google Scholar 

  20. Zou, H., Zhou, Y., Yang, J., Spanos, C.J.: Unsupervised WiFi-enabled IoT device-user association for personalized location-based service. IEEE Internet of Things J. 6(1) (2019)

    Google Scholar 

  21. Li, F., Li, Q., LI, Z., Huang, Z., Chang, X., Xia, J.: A personal location prediction method based on individual trajectory and group trajectory. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2927888

  22. Zhang, W., Li, M., Tandon, R., Li, H.: Online location trace privacy: an information theoretic approach. In: IEEE Transactions on Information Forensics and Security, vol. 14, no. 1 (2019)

    Google Scholar 

  23. Ahmad, S., Ullah, I., Mehmood, F., Fayaz, M., Kim, D.: A stochastic approach towards travel route optimization and recommendation based on users constraints using markov chain. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2926675

  24. Zhang, T., Li, X., Zhang, Q.: location privacy protection: a power allocation approach. In: IEEE Transactions on Communications, vol. 67, no. 1 (2019)

    Google Scholar 

  25. Zhang, Q., Zhang, Y, Caizhong, L., Yan, C., Duan, Y., Wang, H.: sport location-based user clustering with privacy-preservation in wireless IoT-driven healthcare. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2021.3051051

  26. Park, S., Lee, J., Seog, P.: Maximum influential location selection with differentially private user locations. Dig. Obj. Ident. https://doi.org/10.1109/ACCESS.2020.2990706

  27. Liu, Z., Wu, L., Ke, J., Qu, W., Wang, W., Wang, H.: Accountable outsourcing location-based services with privacy preservation. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2019.2936582

  28. Yadav, V.K., Verma, S., Venkatesan, S.: Efficient and secure location-based services scheme in VANET. In: IEEE Transactions on Vehicular Technology, vol. 69, no. 11 (2020)

    Google Scholar 

  29. Yan, Y., Gao, X., Mahmood, A., Feng, T., Xie, P.: Differential private spatial decomposition and location publishing based on unbalanced quadtree partition algorithm. Digit. Obj. Ident. https://doi.org/10.1109/ACCESS.2020.2999580

  30. Zou, S., Xi, J., Wang, H., Xu, G.: CrowdBLPS: a blockchain-based location-privacy-preserving mobile crowd sensing system. In: IEEE Transactions on Industrial Informatics, vol. 16, no. 6 (2020)

    Google Scholar 

Download references

Acknowledgement

This research was funded by the Philosophy and Social Science Foundation of the Jiangsu Higher Education Institutions of China “Research on Blockchain-based Intelligent Credit Information System and its Privacy Preservation Mechanism” (Grants No. 2021SJA0448), the Natural Science Foundation of Jiangsu Province (Grants No. BK20210928), the Higher Education Research Project of Nanjing Institute of Technology (Grants No. 2021ZC13), and Jiangsu province college students’ practical innovation training program (Grants No. 202111276011Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Shi, Y., Tian, Y. (2022). Vehicle Road Privacy Recommendation System Equipped with Markov Chain. In: Tian, Y., Ma, T., Khan, M.K., Sheng, V.S., Pan, Z. (eds) Big Data and Security. ICBDS 2021. Communications in Computer and Information Science, vol 1563. Springer, Singapore. https://doi.org/10.1007/978-981-19-0852-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0852-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0851-4

  • Online ISBN: 978-981-19-0852-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics