Skip to main content

stigLD: Stigmergic Coordination of Linked Data Agents

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Abstract

While current Semantic Web technologies are well-suited for data publication and integration, the design and deployment of dynamic, autonomous and long-lived multi-agent systems (MAS) on the Web is still in its infancy. Following the vision of hypermedia MAS and Linked Systems, we propose to use a value-passing fragment of Milner’s Calculus to formally specify the generic hypermedia-driven behaviour of Linked Data agents and the Web as their embedding environment. We are specifically interested in agent coordination mechanisms based on stigmergic principles. When considering transient marker-based stigmergy, we identify the necessity of generating server-side effects during the handling of safe and idempotent agent-initiated resource requests. This design choice is oftentimes contested with an imprecise interpretation of HTTP semantics, or with rejecting environments as first-class abstractions in MAS. Based on our observations, we present a domain model and a SPARQL function library facilitating the design and implementation of stigmergic coordination between Linked Data agents on the Web. We demonstrate the efficacy our modeling approach in a Make-to-Order fulfilment scenario involving transient stigmergy and negative feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We emphasise that this conception is not in violation with HTTP semantics [14, sections4.2.1,4.2.2] [15].

  2. 2.

    For example via dct:spatial and dct:temporal links.

  3. 3.

    https://jena.apache.org/documentation/query/writing_functions.html.

  4. 4.

    https://jena.apache.org/.

  5. 5.

    https://github.com/BMBF-MOSAIK/StigLD-Demo.

  6. 6.

    http://mosaik.dfki.de.

  7. 7.

    – as well as a production task into the respective machine’s task queue –.

References

  1. Alfeo, A.L., Cimino, M.G., Egidi, S., Lepri, B., Vaglini, G.: A Stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage. IEEE Trans. Intell. Transp. Syst. 19(7), 2258–2267 (2018). https://doi.org/10.1109/TITS.2018.2817558

    Article  Google Scholar 

  2. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked data on the web (LDOW2008). In: Proceedings of the 17th International Conference on World Wide Web, pp. 1265–1266 (2008)

    Google Scholar 

  3. Charpenay, V., et al.: MOSAIK: a formal model for self-organizing manufacturing systems. IEEE Pervasive Comput. 20, 9–18 (2020)

    Google Scholar 

  4. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7_15

    Chapter  Google Scholar 

  5. Ciortea, A., Mayer, S., Boissier, O., Gandon, F.: Exploiting interaction affordances: on engineering autonomous systems for the web of things. In: Second W3C workshop on the Web of Things: The Open Web to Challenge IoT Fragmentation, Munich, Germany (2019)

    Google Scholar 

  6. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A decade in hindsight: the missing bridge between multi-agent systems and the World Wide Web. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 3, pp. 1659–1663 (2019). https://www.alexandria.unisg.ch/256718/

  7. Dipple, A., Raymond, K., Docherty, M.: General theory of Stigmergy: modelling stigma semantics. Elsevier (2014). https://doi.org/10.1016/j.cogsys.2014.02.002

    Article  Google Scholar 

  8. Dipple, A.C.: Standing on the shoulders of ants: Stigmergy in the web. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 355–360 (2011)

    Google Scholar 

  9. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and Stigmergy. Future Generation Comput. Syst. 16(8), 851–871, June 2000. https://doi.org/10.1016/S0167-739X(00)00042-X

  10. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477. IEEE Computer Society (1999). https://doi.org/10.1109/CEC.1999.782657

  11. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  12. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 311–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_10

    Chapter  Google Scholar 

  13. Ferber, J., Müller, J.P.: Influences and reaction: a model of situated multiagent systems. In: 2nd International Conference on Multi-Agent Systems (ICMAS-96), pp. 72–79 (1996)

    Google Scholar 

  14. Fielding, R.: hypertext transfer protocol (http/1.1): semantics and content. Technical report

    Google Scholar 

  15. Fielding, R.: Re: draft findings on unsafe methods (whenToUseGet-7) (2002). https://lists.w3.org/Archives/Public/www-tag/2002Apr/0207.html. Accessed Apr 2021

  16. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan Kaufmann (2012)

    Google Scholar 

  17. Hadeli, K., Valckenaers, P., Kollingbaum, M., Van Brussel, H.: Multi-agent coordination and control using Stigmergy. Comput. Ind. 53(1), 75–96 (2004). https://doi.org/10.1016/S0166-3615(03)00123-4

    Article  MATH  Google Scholar 

  18. Hadeli, K., et al.: Self-organising in multi-agent coordination and control using Stigmergy. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 105–123. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24701-2_8

    Chapter  Google Scholar 

  19. Harth, A., Käfer, T.: Towards specification and execution of linked systems. In: GvD (2016)

    Google Scholar 

  20. Harth, A., Käfer, T.: Towards specification and execution of linked systems. In: CEUR Workshop Proceedings, vol. 1594, pp. 62–67 (2016)

    Google Scholar 

  21. Hedayatzadeh, R., Akhavan Salmassi, F., Keshtgari, M., Akbari, R., Ziarati, K.: Termite colony optimization: a novel approach for optimizing continuous problems. In: 2010 18th Iranian Conference on Electrical Engineering, pp. 553–558 (2010). https://doi.org/10.1109/IRANIANCEE.2010.5507009

  22. Heylighen, F.: Stigmergy as a generic mechanism for coordination: definition, varieties and aspects. Cognition, pp. 1–23 (2011)

    Google Scholar 

  23. Heylighen, F.: Stigmergy as a universal coordination mechanism I: definition and components. Cogn. Syst. Res. 38, 4–13 (2016). https://doi.org/10.1016/j.cogsys.2015.12.002

    Article  Google Scholar 

  24. Heylighen, F.: Stigmergy as a universal coordination mechanism II: varieties and evolution. Cogn. Syst. Res. 38, 50–59 (2016). https://doi.org/10.1016/j.cogsys.2015.12.007

    Article  Google Scholar 

  25. Heylighen, F., Vidal, C.: Getting things done: the science behind stress-free productivity. Long Range Plan. 41(6), 585–605 (2008)

    Article  Google Scholar 

  26. Hunt, E.R., Jones, S., Hauert, S.: Testing the limits of pheromone Stigmergy in high-density robot swarms. Roy. Soc. Open Sci. 6(11) (2019). https://doi.org/10.1098/rsos.190225

  27. Jevtić, A., Gutierrez, Á., Andina, D., Jamshidi, M.: Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst. J. 6(2), 296–304 (2012). https://doi.org/10.1109/JSYST.2011.2167820

    Article  Google Scholar 

  28. Jochum, B., Nürnberg, L., Aßfalg, N., Käfer, T.: Data-driven workflows for specifying and executing agents in an environment of reasoning and RESTful systems. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 93–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_9

    Chapter  Google Scholar 

  29. Kanamori, R., Takahashi, J., Ito, T.: Evaluation of traffic management strategies with anticipatory stigmergy. J. Inf. Process. 22(2), 228–234 (2014). https://doi.org/10.2197/ipsjjip.22.228

    Article  Google Scholar 

  30. Krieger, M.J., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000). https://doi.org/10.1038/35023164

    Article  Google Scholar 

  31. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

    Book  MATH  Google Scholar 

  32. Milner, R.: Communication and concurrency. PHI Series in Computer Science. Prentice Hall (1989)

    Google Scholar 

  33. Privat, G.: Phenotropic and stigmergic webs: the new reach of networks. Univ. Access Inf. Soc. 11(3), 323–335 (2012). https://doi.org/10.1007/s10209-011-0240-1

    Article  Google Scholar 

  34. Smith, G.J., Gero, J.S.: What does an artificial design agent mean by being ‘situated’? Des. Stud. 26, 535–561 (2005). https://doi.org/10.1016/j.destud.2005.01.001

  35. Spieldenner., T., Chelli., M.: Linked data as stigmergic medium for decentralized coordination. In: Proceedings of the 16th International Conference on Software Technologies - ICSOFT, pp. 347–357. INSTICC. SciTePress (2021). https://doi.org/10.5220/0010518003470357

  36. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)

    Article  Google Scholar 

  37. Tummolini, L., Castelfranchi, C.: Trace signals: the meanings of stigmergy. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 141–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71103-2_8

    Chapter  Google Scholar 

  38. Valckenaers, P., Kollingbaum, M., Van Brussel, H., et al.: Multi-agent coordination and control using stigmergy. Comput. Ind. 53(1), 75–96 (2004)

    Article  Google Scholar 

  39. Valckenaers, P., Van Brussel, H., Kollingbaum, M., Bochmann, O.: Multi-agent coordination and control using stigmergy applied to manufacturing control. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001. LNCS (LNAI), vol. 2086, pp. 317–334. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47745-4_15

    Chapter  MATH  Google Scholar 

  40. Dyke Parunak, H.: A survey of environments and mechanisms for human-human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11678809_10

    Chapter  Google Scholar 

  41. Weyns, D., Agentwise, T.H.: A formal model for situated multi-agent systems. Technical report (2004)

    Google Scholar 

  42. Weyns, D., Holvoet, T.: Model for simultaneous actions in situated multi-agent systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 105–118. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39869-1_10

    Chapter  Google Scholar 

  43. Weyns, D., Omicini, A., Odell, J., Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems model of the environment. Auton. Agent Multi-Agent Syst. 14(1), 5–30 (2007). https://doi.org/10.1007/s10458-006-0012-0

Download references

Acknowledgements

This work has been supported by the German Federal Ministry for Education and Research (BMBF) as part of the MOSAIK project (grant no. 01IS18070-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Schubotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schubotz, R., Spieldenner, T., Chelli, M. (2022). stigLD: Stigmergic Coordination of Linked Data Agents. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics