Abstract
Due to COVID-19, intelligent thermal imagers are widely used all over the world. Since intelligent thermal imagers usually require real-time temperature measurement, it is significant to find a method to quickly and accurately detect human faces in thermal infrared images. This paper mainly proposes two different methods. One is to use image processing methods and face detected from visible images to determine the position of the face in the infrared image, while the other is to use target detection algorithms on infrared images, including YOLOv3 and Faster R-CNN. This paper uses the two methods on a self-collected dataset containing 944 pairs of visible and infrared images and observes the robustness of methods by adding random noise to images. Experiments show that the first one has much lower latency and the latter one has higher accuracy in both cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cangea, C., Veličković, P., Liò, P.: XFlow: cross-modal deep neural networks for audiovisual classification. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3711–3720 (2019)
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Kopaczka, M., Nestler, J., Merhof, D.: Face detection in thermal infrared images: a comparison of algorithm- and machine-learning-based approaches. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 518–529. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_44
Kopaczka, M., Schock, J., Nestler, J., Kielholz, K., Merhof, D.: A combined modular system for face detection, head pose estimation, face tracking and emotion recognition in thermal infrared images. In: 2018 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2018)
Kowalski, M., Grudzień, A., Ciurapiński, W.: Detection of human faces in thermal infrared images. Metrol. Measure. Syst. 28, 307–321 (2021)
Long, X., et al.: PP-YOLO: an effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099 (2020)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Ribeiro, R.F., Fernandes, J.M., Neves, A.J.: Face detection on infrared thermal image. SIGNAL 2017 Editors, p. 45 (2017)
Wang, H., Bai, C., Wang, J., Yuan, Z., Li, J., Gao, W.: The application of intelligent thermal imagers in response to COVID-19. China Metrol. 5, 119–132 (2020)
Wuhan Huazhong Numerical Control Co., Ltd. (HCNC): Infrared AI thermal imagimg camera thermometer sensor face recognition body temperature scanner with CCTV dual thermal imager. https://www.alibaba.com/product-detail/Infrared-AI-Thermal-Imagimg-Camera-Thermometer_62490883868.html?spm=a2700.galleryofferlist.normal_offer.d_title.706950c9Bn2BwU. Accessed 04 May 2021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, Y., Wang, L., Xu, G. (2022). Face Detection on Thermal Infrared Images Combined with Visible Images. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_26
Download citation
DOI: https://doi.org/10.1007/978-981-19-1253-5_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-1252-8
Online ISBN: 978-981-19-1253-5
eBook Packages: Computer ScienceComputer Science (R0)