Skip to main content

Face Detection on Thermal Infrared Images Combined with Visible Images

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 671 Accesses

Abstract

Due to COVID-19, intelligent thermal imagers are widely used all over the world. Since intelligent thermal imagers usually require real-time temperature measurement, it is significant to find a method to quickly and accurately detect human faces in thermal infrared images. This paper mainly proposes two different methods. One is to use image processing methods and face detected from visible images to determine the position of the face in the infrared image, while the other is to use target detection algorithms on infrared images, including YOLOv3 and Faster R-CNN. This paper uses the two methods on a self-collected dataset containing 944 pairs of visible and infrared images and observes the robustness of methods by adding random noise to images. Experiments show that the first one has much lower latency and the latter one has higher accuracy in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Cangea, C., Veličković, P., Liò, P.: XFlow: cross-modal deep neural networks for audiovisual classification. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3711–3720 (2019)

    Article  Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Kopaczka, M., Nestler, J., Merhof, D.: Face detection in thermal infrared images: a comparison of algorithm- and machine-learning-based approaches. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 518–529. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70353-4_44

    Chapter  Google Scholar 

  8. Kopaczka, M., Schock, J., Nestler, J., Kielholz, K., Merhof, D.: A combined modular system for face detection, head pose estimation, face tracking and emotion recognition in thermal infrared images. In: 2018 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2018)

    Google Scholar 

  9. Kowalski, M., Grudzień, A., Ciurapiński, W.: Detection of human faces in thermal infrared images. Metrol. Measure. Syst. 28, 307–321 (2021)

    Google Scholar 

  10. Long, X., et al.: PP-YOLO: an effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099 (2020)

  11. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  12. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  13. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  15. Ribeiro, R.F., Fernandes, J.M., Neves, A.J.: Face detection on infrared thermal image. SIGNAL 2017 Editors, p. 45 (2017)

    Google Scholar 

  16. Wang, H., Bai, C., Wang, J., Yuan, Z., Li, J., Gao, W.: The application of intelligent thermal imagers in response to COVID-19. China Metrol. 5, 119–132 (2020)

    Google Scholar 

  17. Wuhan Huazhong Numerical Control Co., Ltd. (HCNC): Infrared AI thermal imagimg camera thermometer sensor face recognition body temperature scanner with CCTV dual thermal imager. https://www.alibaba.com/product-detail/Infrared-AI-Thermal-Imagimg-Camera-Thermometer_62490883868.html?spm=a2700.galleryofferlist.normal_offer.d_title.706950c9Bn2BwU. Accessed 04 May 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangda Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Wang, L., Xu, G. (2022). Face Detection on Thermal Infrared Images Combined with Visible Images. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics