Skip to main content

Imbalance Classification Based on Deep Learning and Fuzzy Support Vector Machine

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

Abstract

Imbalanced data is widespread in the fields of medical diagnosis, information security and industrial production. Traditional classification methods can handle balanced data very well. However, when dealing with imbalanced classification, it will favor majority classes, which results in low classification performance. This paper proposes an imbalanced classification method based on deep feature representation, named DL-FSVM. DL-FSVM extracts feature information in the input space using a deep neural network (DNN) to ensure similarity within class and improve the separation between different classes. After obtaining the feature representation, oversampling is performed in this embedding space based on the center distance to enhance the balance of the data distribution. Fuzzy Support Vector Machine (FSVM) is used as the final classifier. Assigning higher misclassification costs to minority class samples through cost-sensitive learning. Experiments were performed on six real-world datasets. The experimental results show that DL-FSVM achieves promising classification performance in three evaluation metrics: G-means, F1-score and AUC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: The AAAI Conference on Artificial Intelligence, pp.1288–1294 (2017)

    Google Scholar 

  2. Li, H., Wong M.: Financial fraud detection by using grammar-based multi-objective genetic programming with ensemble learning. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1113–1120 (2015)

    Google Scholar 

  3. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)

    Article  Google Scholar 

  4. Romani, M., et al.: Face memory and face recognition in children and adolescents with attention deficit hyperactivity disorder: a systematic review. Neurosci. Biobehav. Rev. 89, 1–12 (2018)

    Article  Google Scholar 

  5. Tao, X., et al.: Affinity and class probability-based fuzzy support vector machine for imbalanced data sets. Neural Netw. 122, 289–307 (2020)

    Article  Google Scholar 

  6. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: The IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  7. Cooray, K.: Generalized gumbel distribution. J. Appl. Stat. 37(1), 171–179 (2010)

    Article  MathSciNet  Google Scholar 

  8. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  9. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 63–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_9

    Chapter  Google Scholar 

  10. Kang, Q., Chen, X., Li, S., Zhou, M.: A noise-filtered under-sampling scheme for imbalanced classification. IEEE Trans. Cybern. 47(12), 4263–4274 (2016)

    Article  Google Scholar 

  11. Kang, Q., Shi, L., Zhou, M., Wang, X., Wu, Q., Wei, Z.: A distance-based weighted undersampling scheme for support vector machines and its application to imbalanced classification. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4152–4165 (2017)

    Article  Google Scholar 

  12. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  14. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)

    Google Scholar 

  15. Mathew, J., Luo, M., Pang, C.K., Chan, H.L.: Kernel-based SMOTE for SVM classification of imbalanced datasets. In: 41st Annual Conference of the IEEE Industrial Electronics Society (IECON 2015), pp. 1127–1132. IEEE (2015)

    Google Scholar 

  16. Mathew, J., Pang, C.K., Luo, M., Leong, W.H.: Classification of imbalanced data by oversampling in kernel space of support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4065–4076 (2017)

    Article  Google Scholar 

  17. Batuwita, R., Palade, V.: FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Trans. Fuzzy Syst. 18(3), 558–571 (2010)

    Article  Google Scholar 

  18. Yu, H., Sun, C., Yang, X., Zheng, S., Zou, H.: Fuzzy support vector machine with relative density information for classifying imbalanced data. IEEE Trans. Fuzzy Syst. 27(12), 2353–2367 (2019)

    Article  Google Scholar 

  19. Tao, X., et al.: Affinity and class probability-based fuzzy support vector machine for imbalanced data sets. Neural Netw. 122, 289–307 (2020)

    Article  Google Scholar 

  20. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 324–331. IEEE (2009)

    Google Scholar 

  21. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39804-2_12

    Chapter  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Ng, W.W., Zeng, G., Zhang, J., Yeung, D.S., Pedrycz, W.: Dual autoencoders features for imbalance classification problem. Pattern Recogn. 60, 875–889 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61703279), in part by the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., An, J., Ma, X., Ma, C., Bao, H. (2022). Imbalance Classification Based on Deep Learning and Fuzzy Support Vector Machine. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics