Skip to main content

Attention-Guided Memory Model for Video Object Segmentation

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 570 Accesses

Abstract

Semi-supervised video object segmentation (S-VOS) is defined as pixel-wise separating the object of interest specified to initial mask during inference period. For small object, the exploitable information contained in single frame is limited, making S-VOS task more challenging. Existing methods cannot reach a balance between accuracy and speed on small object sequences. To resolve the problem, we develop an Attention-Guided Memory model (AGM) for video object segmentation by introducing two novel modules, namely Joint Attention Guider (JAG) and spatial-temporal feature fusion (STFF). For accuracy, JAG employs multi-dimension attention mechanism to generate salient feature map, which highlights the object area through visual guide, spatial guide and channel guide. Further, STFF integrates more complete spatial-temporal information by fusing previous memory feature, current high-level salient feature and low-level features, which provides an effective representation of small object. For speed, the STFF employs several light-weight RNNs whose embedded computation architecture is more efficient than the explicit query approach used in the state-of-the-art models. We conduct extensive experiments on DAVIS and YouTube-VOS datasets. For small object on DAVIS 2017, AGM obtains 63.5\(\%\) \( \mathrm{{\mathcal{J}}} \& \mathrm{{\mathcal{F}}}\) mean with 28.0 fps for 480p, which achieves similar accuracy with about 5x faster speed compared with the state-of-the-art method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azimi, F., Bischke, B., Palacio, S., Raue, F., Hees, J., Dengel, A.: Revisiting sequence-to-sequence video object segmentation with multi-task loss and skip-memory. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5376–5383. IEEE (2021)

    Google Scholar 

  2. Bao, L., Wu, B., Liu, W.: CNN in MRF: video object segmentation via inference in a CNN-based higher-order spatio-temporal MRF. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5977–5986 (2018)

    Google Scholar 

  3. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  4. Bulo, S.R., Porzi, L., Kontschieder, P.: In-place activated batchnorm for memory-optimized training of DNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5639–5647 (2018)

    Google Scholar 

  5. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixe, L., Gool, L.V.: One-shot video object segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  8. Chen, X., Li, Z., Yuan, Y., Yu, G., Shen, J., Qi, D.: State-aware tracker for real-time video object segmentation. arXiv preprint arXiv:2003.00482 (2020)

  9. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1189–1198 (2018)

    Google Scholar 

  10. Cheng, J., Tsai, Y.H., Hung, W.C., Wang, S., Yang, M.H.: Fast and accurate online video object segmentation via tracking parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7415–7424 (2018)

    Google Scholar 

  11. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  12. Fathi, A., et al.: Semantic instance segmentation via deep metric learning. arXiv preprint arXiv:1703.10277 (2017)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  15. Hu, Y.T., Huang, J.B., Schwing, A.G.: Videomatch: matching based video object segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 54–70 (2018)

    Google Scholar 

  16. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8953–8962 (2019)

    Google Scholar 

  17. Khoreva, A., Benenson, R., Ilg, E., Brox, T., Schiele, B.: Lucid data dreaming for video object segmentation. Int. J. Comput. Vision 127(9), 1175–1197 (2019)

    Article  Google Scholar 

  18. Li, X., Change Loy, C.: Video object segmentation with joint re-identification and attention-aware mask propagation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 90–105 (2018)

    Google Scholar 

  19. Liu, D., Xu, S., Liu, X.Y., Xu, Z., Wei, W., Zhou, P.: Spatiotemporal graph neural network based mask reconstruction for video object segmentation. arXiv preprint arXiv:2012.05499 (2020)

  20. Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., Van Gool, L.: Video object segmentation with episodic graph memory networks. arXiv preprint arXiv:2007.07020 (2020)

  21. Luiten, J., Voigtlaender, P., Leibe, B.: PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 565–580. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_35

    Chapter  Google Scholar 

  22. Maninis, K.K., et al.: Video object segmentation without temporal information. IEEE Trans. Pattern Anal. Mach. Intell. 41(6), 1515–1530 (2018)

    Article  Google Scholar 

  23. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  24. Oh, S.W., Lee, J.Y., Sunkavalli, K., Kim, S.J.: Fast video object segmentation by reference-guided mask propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7376–7385 (2018)

    Google Scholar 

  25. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9226–9235 (2019)

    Google Scholar 

  26. Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2663–2672 (2017)

    Google Scholar 

  27. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)

    Google Scholar 

  28. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  29. Robinson, A., Lawin, F.J., Danelljan, M., Khan, F.S., Felsberg, M.: Learning fast and robust target models for video object segmentation. arXiv preprint arXiv:2003.00908 (2020)

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. arXiv preprint arXiv:1503.08895 (2015)

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  33. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.C.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490 (2019)

    Google Scholar 

  34. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional neural networks for the 2017 davis challenge on video object segmentation. In: The 2017 DAVIS Challenge on Video Object Segmentation-CVPR Workshops, vol. 5 (2017)

    Google Scholar 

  35. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  36. Wang, Z., Xu, J., Liu, L., Zhu, F., Shao, L.: RANet: ranking attention network for fast video object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3978–3987 (2019)

    Google Scholar 

  37. Wu, B., Hu, B.G., Ji, Q.: A coupled hidden Markov random field model for simultaneous face clustering and tracking in videos. Pattern Recogn. 64, 361–373 (2017)

    Article  Google Scholar 

  38. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3415–3424 (2017)

    Google Scholar 

  39. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  40. Xu, N., et al.: YouTube-VOS: sequence-to-sequence video object segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 585–601 (2018)

    Google Scholar 

  41. Xu, S., Liu, D., Bao, L., Liu, W., Zhou, P.: MHP-VOS: multiple hypotheses propagation for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 314–323 (2019)

    Google Scholar 

  42. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6499–6507 (2018)

    Google Scholar 

  43. Zeng, X., Liao, R., Gu, L., Xiong, Y., Fidler, S., Urtasun, R.: DMM-Net: differentiable mask-matching network for video object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3929–3938 (2019)

    Google Scholar 

  44. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunjian Lin or Yihua Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Tan, Y. (2022). Attention-Guided Memory Model for Video Object Segmentation. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics