Skip to main content

Multi-workflow Scheduling Based on Implicit Information Transmission in Cloud Computing Environment

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 568 Accesses

Abstract

In the current cloud computing environment, task scheduling and resource allocation are the key and difficult points in the performance improvement. However, there are numerous problems of workflow, such as Montage, Inspiral, Cybershake etc. They have similar workflow structures, which affect the efficiency of task scheduling and resource distribution. In addition, the result obtained by the traditional evolutionary algorithm is the allocation sequence of the virtual machine in the cloud computing environment only for single task, which is a great waste of resources. Aiming at these problems, the multiple workflow tasks are processed in this paper by using implicit information transfer at the same time, that is, to reasonably use the allocation sequence of each task to exchange information so as to share a better virtual machine allocation. Meanwhile, using the potential relationship and differences between different tasks are better able to make population has better convergence and diversity. We proposed a multifactorial evolutionary algorithm based on combinatorial population (CP-MFEA) for multitasking workflows. This paper constructs nine sets of multi-task combination problems, and compares the method with the traditional single-task evolutionary algorithm, the purpose is to describe the superiority of this method clearly. Through the experimental results, we can notice that CP-MFEA’s ability is much more obvious than single-task evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T.G., Peng, L.J., Yin, X.H., Rong, J.T., Yang, J.J., Cong, G.D.: Analysis of user satisfaction with online education platforms in china during the COVID-19 pandemic. Healthcare 8(3), 200 (2020)

    Article  Google Scholar 

  2. Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Magaz. 1(1), 28–36 (2006)

    Article  Google Scholar 

  3. Back, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evolution. Comput. 1(1), 3–17 (1997)

    Article  Google Scholar 

  4. Li, N., Wang, S., Li, Y.: A hybrid approach of GA and ACO for VRP. J. Comput. Inf. Syst. 7(13) (2011)

    Google Scholar 

  5. Rabbouch, B., Saâdaoui, F., Mraihi, R.: Efficient implementation of the genetic algorithm to solve rich vehicle routing problems. Oper. Res. 21(3), 1763–1791 (2019)

    Google Scholar 

  6. Yusuf, I., Baba, M.S., Iksan, N.: Applied genetic algorithm for solving rich VRP. Appl. Artif. Intell. 28(10), 957–991 (2014)

    Article  Google Scholar 

  7. Andrew, O.: A genetic algorithm model for vehicle routing problem (VRP) (2015)

    Google Scholar 

  8. Xu, J., Zhang, Z., Hu, Z., et al.: A many-objective optimized task allocation scheduling model in cloud computing. Appl. Intell. 1–18

    Google Scholar 

  9. Cai, X., Geng, S., Wu, D., Cai, J., Chen, J.: A multi-cloud model based many-objective intelligent algorithm for efficient task scheduling in internet of things. IEEE Internet Things J. (2020). https://doi.org/10.1109/JIOT.2020.3040019

    Article  Google Scholar 

  10. Ming-Si, S.: Intelligent control method of ship course based on genetic learning algorithm. Ship Sci. Technol. (2019)

    Google Scholar 

  11. Yan, L.: Intelligent control technology of ultra-high voltage grid. J. Adv. Comput. Intell. Intell. Inf. (2019)

    Google Scholar 

  12. Wang, G., Xiao, S., Chen, X., et al.: Application of genetic algorithm in automatic train operation. Wirel. Person. Commun. (2018)

    Google Scholar 

  13. Sun, J., Wang, R., Yu, K., Miao, K., Deng, H.: Application of genetic algorithm and neural network in ship’s heading PID tracking control. In: Qiao, F., Patnaik, S., Wang, J. (eds.) ICMIR 2017. AISC, vol. 691, pp. 436–442. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70990-1_64

    Chapter  Google Scholar 

  14. Cui, Z.H., et al.: A hybrid blockchain-based identity authentication scheme for Multi-WSN. IEEE Trans. Serv. Comput. 13(2), 241–251 (2020)

    Google Scholar 

  15. Yusof, R., Khairuddin, U., Khalid, M.: A new mutation operation for faster convergence in genetic algorithm feature selection. Int. J. Innov. Comput. Inf. Control 8(10B), 7363–7378 (2012)

    Google Scholar 

  16. Wong, W.K., Chekima, A., Ahmad, I.O.B., et al.: Genetic algorithm feature selection and classifier optimization using moment invariants and shape features. Int. Conf. Artif. Intell. IEEE Comput. Soc. (2013)

    Google Scholar 

  17. Devaraj, N.: Feature Selection using Genetic Algorithm to Improve SVM Classifier (2019)

    Google Scholar 

  18. Yildiz, O., Dogru, I.A.: Permission-based android malware detection system using feature selection with genetic algorithm. Int. J. Softw. Eng. Knowl. Eng. 29(2), 245–262 (2019)

    Article  Google Scholar 

  19. Zhang, Z., Xie, L.: A many objective integrated evolutionary algorithm for feature selection in anomaly detection. Concurr. Comput. Pract. Exp. 32(22) (2020)

    Google Scholar 

  20. Zhang, Z., Wen, J., Zhang, J., Cai, X., Xie, L.: A many objective-based feature selection model for anomaly detection in cloud environment. IEEE Access 8, 60218–60231 (2020)

    Article  Google Scholar 

  21. Chen, T.G., Wang, Y.L., Yang, J.J., Cong, G.D.: Modeling public opinion reversal process with the considerations of external intervention information and individual internal characteristics. Healthcare 8(2), 160 (2020)

    Article  Google Scholar 

  22. Cui, Z.H., et al.: Personalized recommendation system based on collaborative filtering for IoT scenarios. IEEE Trans. Serv. Comput. 13(4), 685–695 (2020)

    Article  Google Scholar 

  23. Cai, X., Hu, Z., Zhao, P., et al.: A hybrid recommendation system with many-objective evolutionary algorithm. Exp. Syst. Appl. 159, 113648 (2020)

    Article  Google Scholar 

  24. Chen, T.G., Shi, J.W., Yang, J.J., Cong, G.D., Li, G.F.: Modeling public opinion polarization in group behavior by integrating SIRS-based information diffusion process. Complexity 2020, 4791527 (2020)

    MATH  Google Scholar 

  25. Xu, Y., Li, K., Hu, J., et al.: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf. Sci. 270, 255–287 (2014)

    Article  MathSciNet  Google Scholar 

  26. Jia, Y., Buyya, R.: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 14(3–4), 217–230 (2006)

    Google Scholar 

  27. Kumar, P., Verma, A.: Independent task-scheduling in cloud computing by improved genetic algorithm. Int. J. Adv. Res. Comput. Sci. Softw. Eng. (2012). https://doi.org/10.1145/2345396.2345420

    Article  Google Scholar 

  28. Zhu, Z., Zhang, G., Li, M., et al.: Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2016)

    Article  Google Scholar 

  29. Topcuoglu, H., Hariri, S., Min-You, W.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parall. Distrib. Syst. 13(3), 260–274 (2002)

    Article  Google Scholar 

  30. Jia, Y.H., Chen, W.N., Yuan, H., et al.: An intelligent cloud workflow scheduling system with time estimation and adaptive ant colony optimization. IEEE Trans. Syst. Man Cybern. Syst. 1–16 (2018)

    Google Scholar 

  31. Yi, G., Budati, C.: Energy-aware workflow scheduling and optimization in clouds using bat algorithm. Future Gen. Comput. Syst. 113, 106–112 (2020)

    Article  Google Scholar 

  32. Sellami, K., Tiako, P.F., Sellami, L., et al.: Energy efficient workflow scheduling of cloud services using chaotic particle swarm optimization. In: 2020 IEEE Green Technologies Conference (GreenTech). IEEE (2020)

    Google Scholar 

  33. Gupta, A., Ong, Y.-S., Feng, L.: Multifactorial evolution: towards evolutionary multitasking. In: IEEE Transactions on Evolutionary Computation (99), 1 (2015)

    Google Scholar 

  34. Iqbal, M., Xue, B., Al-Sahaf, H., et al.: Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans. Evol. Comput. 21(4), 569–587 (2017)

    Article  Google Scholar 

  35. Zhou, L., Feng, L., Zhong, J., et al.: Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem. In: Computational Intelligence. IEEE (2017)

    Google Scholar 

  36. Xie, T., Gong, M., Tang, Z., et al.: Enhancing evolutionary multifactorial optimization based on particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC). IEEE (2016)

    Google Scholar 

  37. Bharathi, S., Chervenak, A., Deelman, E., et al.: Characterization of scientific workflows. In: Workshop on Workflows in Support of Large-scale Science. IEEE (2008)

    Google Scholar 

  38. Juve, G., Chervenak, A., Deelman, E., et al.: Characterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. 29(3), 682–692 (2013)

    Article  Google Scholar 

  39. Berriman, G.B., Good, J.C., Laity, A.C., et al.: Montage: a grid-enabled engine for delivering custom science-grade mosaics on demand. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5493 (2004)

    Google Scholar 

  40. Oliver, I.M.: A study of permutation crossover operations on the traveling salesman problem. Proceedings of the International Conference on GA Lawrence Erlbaum Associates Hillsdale, NJ (1987)

    Google Scholar 

  41. Potvin, J.-Y., Duhamel, C., Guertin, F.: A genetic algorithm for vehicle routing with backhauling. Appl. Intell. 6(4), 345–355 (1996)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China under Grant No.2018YFC1604000, the National Natural Science Foundation of China under Grant No.61806138, No. U1636220, No.61961160707 and No.61976212, Key R&D program of Shanxi Province (International Cooperation) under Grant No.201903D421048. Australian Research Council (ARC) projects DP190101893, DP170100136, and LP180100758.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjuan Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, L., Dong, T., Lan, Y., Cai, X. (2022). Multi-workflow Scheduling Based on Implicit Information Transmission in Cloud Computing Environment. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics