Skip to main content

A Hybrid Multi-objective Coevolutionary Approach for the Multi-user Agile Earth Observation Satellite Scheduling Problem

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

Abstract

Multi-user agile earth observation satellite scheduling problem (MU-AEOSSP) is an important combinatorial optimization problem for satellite daily management. In this study, a MU-AEOSSP is addressed to tackle the failure rate and the fairness of different users simultaneously. A hybrid multi-objective coevolutionary approach (HMOCA) is then proposed to handle the complicate constraints and to optimize the objectives. HMOCA evolves two populations to solve an original MU-AEOSSP considering all constraints and a helper problem without the transition time constraint. By the cooperation of the two population, both the convergence and the diversity performance can be significantly improved. To further enhance the performance of HMOCA, several specific variation operators and a local search operator considering the time-dependent transition time of the MU-AEOSSP are equipped. The HMOCA is extensively tested and compared with three classical multi-objective evolutionary algorithms (NSGAII, MOEA/D, IBEA) and two methods of the time-dependent multi-objective AEOSSP (D-MOMA-TD and I-MOMA-TD) on several instances which are generated based on real-word situation. Experiment results show that the proposed approach outperforms all the comparison methods on most of the instances in terms of convergence, solution quality and diversity.

Supported by the National Natural Science Foundation of China, Grant No. 71701203, 72001212 and 71901213.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Dilkina, B., Havens, B.: Agile satellite scheduling via permutation search with constraint propagation. Actenum Corporation: Vancouver Canada, pp. 1–20 (2005)

    Google Scholar 

  3. Du, Y., Wang, T., Xin, B., Wang, L., Chen, Y., Xing, L.: A data-driven parallel scheduling approach for multiple agile earth observation satellites. IEEE Trans. Evol. Comput. 24(4), 679–693 (2019)

    Article  Google Scholar 

  4. Fan, Z., Li, W., Cai, X., Li, H., Wei, C., Zhang, Q., Deb, K., Goodman, E.: Push and pull search for solving constrained multi-objective optimization problems. Swarm Evol. Comput. 44, 665–679 (2019)

    Article  Google Scholar 

  5. He, L., Liu, X., Laporte, G., Chen, Y., Chen, Y.: An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Comput. Oper. Res. 100, 12–25 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, L., Chen, H., Li, J., Jing, N., Emmerich, M.: Preference-based evolutionary many-objective optimization for agile satellite mission planning. IEEE Access 6, 40963–40978 (2018)

    Article  Google Scholar 

  7. Li, L., Yao, F., Jing, N., Emmerich, M.: Preference incorporation to solve multi-objective mission planning of agile earth observation satellites. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1366–1373. IEEE (2017)

    Google Scholar 

  8. Liu, X., Laporte, G., Chen, Y., He, R.: An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Computers & Operations Research 86, 41–53 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ning, W., Guo, B., Yan, Y., Wu, X., Wu, J., Zhao, D.: Constrained multi-objective optimization using constrained non-dominated sorting combined with an improved hybrid multi-objective evolutionary algorithm. Eng. Optim. 49(10), 1645–1664 (2017)

    Article  MathSciNet  Google Scholar 

  10. Peng, G., Dewil, R., Verbeeck, C., Gunawan, A., Xing, L., Vansteenwegen, P.: Agile earth observation satellite scheduling: An orienteering problem with time-dependent profits and travel times. Comput. Oper. Res. 111, 84–98 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ebrahim Sorkhabi, A., Deljavan Amiri, M., Khanteymoori, A.R.: Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization. Soft. Comput. 21(24), 7251–7267 (2016). https://doi.org/10.1007/s00500-016-2422-5

    Article  Google Scholar 

  12. Sun, K., Li, J., Chen, Y., He, R.: Multi-objective mission planning problem of agile earth observing satellites. In: Proceedings of the 12th International Conference on Space Operations, vol. 4, pp. 2802–2810. Citeseer (2012)

    Google Scholar 

  13. Tangpattanakul, P., Jozefowiez, N., Lopez, P.: Multi-objective optimization for selecting and scheduling observations by agile earth observing satellites. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 112–121. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_12

    Chapter  Google Scholar 

  14. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  15. Tian, Y., Zhang, T., Xiao, J., Zhang, X., Jin, Y.: A coevolutionary framework for constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 25(1), 102–116 (2020)

    Article  Google Scholar 

  16. Wang, J., Ren, W., Zhang, Z., Huang, H., Zhou, Y.: A hybrid multiobjective memetic algorithm for multiobjective periodic vehicle routing problem with time windows. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4732–4745 (2018)

    Article  Google Scholar 

  17. Wang, J., Jing, N., Li, J., Chen, Z.H.: A multi-objective imaging scheduling approach for earth observing satellites. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 2211–2218 (2007)

    Google Scholar 

  18. Wei, L., Chen, Y., Chen, M., Chen, Y.: Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem. Applied Soft Computing, p. 107607 (2021)

    Google Scholar 

  19. Wei, L., Xing, L., Wan, Q., Song, Y., Chen, Y.: A multi-objective memetic approach for time-dependent agile earth observation satellite scheduling problem. Comput. Ind. Eng. 159 (2021)

    Google Scholar 

  20. Wilcoxon, F.: Individual comparisons by ranking methods. In: Breakthroughs in Statistics, pp. 196–202. Springer (1992)

    Google Scholar 

  21. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjective evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

    Google Scholar 

  22. Wolfe, W.J., Sorensen, S.E.: Three scheduling algorithms applied to the earth observing systems domain. Manage. Sci. 46(1), 148–166 (2000)

    Google Scholar 

  23. Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Google Scholar 

  24. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer (2004)

    Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, L., Song, Y., Xing, L., Chen, M., Chen, Y. (2022). A Hybrid Multi-objective Coevolutionary Approach for the Multi-user Agile Earth Observation Satellite Scheduling Problem. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics