Skip to main content

An Improved Bare-Bones Multi-objective Artificial Bee Colony Algorithm

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

Abstract

Artificial bee colony (ABC) algorithm shows good performance on many optimization problems. However, most ABC variants focus on single objective optimization problems. In this paper, an improved bare-bones multi-objective artificial bee colony (called BMOABC) algorithm is proposed to solve multi-objective optimization problems (MOPs). Fast non-dominated sorting is used to select non-dominated solutions. The crowded-comparison operator is employed to maintain population diversity. To enhance the search ability, an improved bare-bones strategy is utilized. The fitness function is modified to handle multiple objective values. Then, a novel probability selection model is designed for the onlooker bees. To verify the effectiveness of BMOABC, five benchmark MOPs are employed in the experiment. Experimental results show that BMOABC is superior to three other multi-objective algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  2. Wang, H., Wu, Z.J., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.: Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci. 27, 587–603 (2014)

    Article  MathSciNet  Google Scholar 

  3. Wang, H., Wang, W.: A new multi-strategy ensemble artificial bee colony algorithm for water demand prediction. In: Peng, H., Deng, C., Wu, Z., Liu, Y. (eds.) ISICA 2018. CCIS, vol. 986, pp. 63–70. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6473-0_6

    Chapter  Google Scholar 

  4. Wang, H., et al.: Multi-strategy and dimension perturbation ensemble of artificial bee colony. In: IEEE Congress on Evolutionary Computation (CEC 2019), pp. 697–704 (2019)

    Google Scholar 

  5. Wang, H., Wang, W.J., Xiao, S.Y., Cui, Z.H., Xu, M.Y., Zhou, X.Y.: Improving artifificial Bee colony algorithm using a new neighborhood selection mechanism. Inf. Sci. 527, 227–240 (2020)

    Article  Google Scholar 

  6. Xiao, S., Wang, H., Wang, W., Huang, Z., Zhou, X., Xu, M.: Artificial bee colony algorithm based on adaptive neighborhood search and Gaussian perturbation. Appl. Soft Comput. 100, 106955 (2021)

    Article  Google Scholar 

  7. Ye, T., Zeng, T., Zhang, L., Xu, M., Wang, H., Hu, M.: Artificial bee colony algorithm with an adaptive search manner. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 486–497. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_35

    Chapter  Google Scholar 

  8. Zeng, T., Ye, T., Zhang, L., Xu, M., Wang, H., Hu, M.: Population diversity guided dimension perturbation for artificial bee colony algorithm. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 473–485. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5188-5_34

    Chapter  Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  10. Huo, Y., Zhuang, Y., Gu, J.J., Ni, S.R.: Elite-guided multi-objective artificial bee colony algorithm. Appl. Soft Comput. 32, 199–210 (2015)

    Article  Google Scholar 

  11. Xiang, Y., Zhou, Y.R.: A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization. Appl. Soft Comput. 35, 766–785 (2015)

    Article  Google Scholar 

  12. Xiang, Y., Zhou, Y.R., Liu, H.L.: An elitism based multi-objective artificial bee colony algorithm. Eur. J. Oper. Res. 245(1), 168–193 (2015)

    Article  Google Scholar 

  13. Hu, Z.Y., Yang, J.M., Sun, H., Wei, L.X., Zhao, Z.W.: An improved multi-objective evolutionary algorithm based on environmental and history information. Neurocomputing 222, 170–182 (2017)

    Article  Google Scholar 

  14. Zhang, Y., Gong, D.W., Ding, Z.H.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012)

    Article  Google Scholar 

  15. Zhang, M., Wang, H., Cui, Z., Chen, J.: Hybrid multi-objective cuckoo search with dynamical local search. Memetic Comput. 10(2), 199–208 (2017). https://doi.org/10.1007/s12293-017-0237-2

    Article  Google Scholar 

  16. Schott, J.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Cell. Immunol. 37(1), 1–13 (1995)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (Nos. 20212ACB212004 and 20212BAB202023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, T., Wang, H., Wang, W., Zeng, T., Zhang, L. (2022). An Improved Bare-Bones Multi-objective Artificial Bee Colony Algorithm. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics