Skip to main content

Synchronization of Chaos with a Single Driving Variable Feedback Control Based on DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1565))

  • 748 Accesses

Abstract

DNA molecular reaction is one of methods to build next generation operational circuit. It has demonstrated the capacity to design control systems. In this paper, a PID controll based on DNA strand displacement (DSD) is presented to realize synchronization of chaotic system. Based on the theory of synchronization and design principle of control, the proportion terms, integration terms, and differentiation terms are added to chaotic oscillatory systems for implementing synchronization by DSD. The two four-variable chaotic oscillatory systems are tended to be synchronization by PID control. There are four chemical reaction modules which are proposed to realize the systems. The modeling and simulation results demonstrate the validity of chemical reaction terms and control systems by visual DSD and matelab. Achieved the ideal results when it is applied to the chaotic system synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, X., Meng, Z., Wang, Y., Sun, J.: Proportional-integral-derivative control of four-variable chaotic oscillatory circuit based on DNA strand displacement. J. Nanoelectron. Optoelectron. 16(4), 612–623 (2021)

    Article  Google Scholar 

  2. Apraiz, A., Mitxelena, J., Zubiaga, A.: Studying cell cycle-regulated gene expression by two complementary cell synchronization protocols. JoVE (J. Visualized Exp.) (124), e55745 (2017)

    Google Scholar 

  3. Cardelli, L., Tribastone, M., Tschaikowski, M.: From electric circuits to chemical networks. Nat. Comput. 19(1), 237–248 (2019). https://doi.org/10.1007/s11047-019-09761-7

    Article  MathSciNet  Google Scholar 

  4. Foo, M., Kim, J., Sawlekar, R., Bates, D.G.: Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes. Comput. Chem. Eng. 99, 145–157 (2017)

    Article  Google Scholar 

  5. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508), 1560–1563 (2001)

    Article  Google Scholar 

  6. Huang, C., Han, Y.J., Sun, J.W., Zhu, W.J., Wang, Y.F., Zhou, Q.L.: The design and application of exclusive or logical computation based on DNA 3-Arm sub-tile self-assembly. J. Nanoelectron. Optoelectron. 15(11), 1327–1334 (2020)

    Article  Google Scholar 

  7. Li, J.X., Wang, Y.F., Sun, J.W.: Odd judgment circuit of four inputs based on DNA strand displacement. J. Nanoelectron. Optoelectron. 15(3), 415–424 (2020)

    Article  Google Scholar 

  8. Liu, X., Parhi, K.K.: Molecular and DNA artificial neural networks via fractional coding. IEEE Trans. Biomed. Circ. Syst. 14(3), 490–503 (2020)

    Article  Google Scholar 

  9. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)

    Article  Google Scholar 

  10. Paulino, N.M.G., Foo, M., Kim, J., Bates, D.G.: On the stability of nucleic acid feedback control systems. Automatica 119, 109103 (2020)

    Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MathSciNet  Google Scholar 

  12. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. Royal Soc. Interface 8(62), 1281–1297 (2011)

    Article  Google Scholar 

  13. Sawlekar, R., Montefusco, F., Kulkarni, V.V., Bates, D.G.: Implementing nonlinear feedback controllers using DNA strand displacement reactions. IEEE Trans. Nanobiosci. 15(5), 443–454 (2016)

    Article  Google Scholar 

  14. Wang, Y., Li, Z., Sun, J.: Three-variable chaotic oscillatory system based on DNA strand displacement and its coupling combination synchronization. IEEE Trans. Nanobiosci. 19(3), 434–445 (2020)

    Article  Google Scholar 

  15. Wang, Y., Wang, P., Huang, C., Sun, J.: Five-input cube-root logical operation based on DNA strand displacement. J. Nanoelectron. Optoelectron. 13(6), 831–838 (2018)

    Article  Google Scholar 

  16. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)

    Article  Google Scholar 

  17. Zou, C., Wei, X., Zhang, Q., Liu, Y.: Synchronization of chemical reaction networks based on DNA strand displacement circuits. IEEE Access 6, 20584–20595 (2018)

    Article  Google Scholar 

  18. Zou, C., Zhang, Q., Wei, X.: Compilation of a coupled hyper-chaotic Lorenz system based on DNA strand displacement reaction network. IEEE Trans. NanoBiosci. 20(1), 92–104 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Z., An, X., Sun, J. (2022). Synchronization of Chaos with a Single Driving Variable Feedback Control Based on DNA Strand Displacement. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1256-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1255-9

  • Online ISBN: 978-981-19-1256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics