Skip to main content

Quantifying Differences Between Architects’ and Non-architects’ Visual Perception of Originality of Tower Typology Using Deep Learning

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Design Imperatives: The Future is Now (CAAD Futures 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1465))

  • 1664 Accesses

Abstract

The paper presents a computational methodology to quantify the differences in visual perception of originality of the rotating tower typology between architects and non-architects. A parametric definition of the Absolute Tower Building D with twelve variables is used to generate 250 design variants. Subsequently, sixty architects and sixty non-architects were asked to rate the design variants, in comparison to the original design, on a Likert scale of ‘Plagiarised’ to ‘Original’. With the crowd-sourced evaluation data, two neural networks - one each for architects and non-architects - were trained to predict the originality score of 15,000 design variants. The results indicate that architects are more lenient at seeing design variants as original. The average originality score by architects is 27.74% higher than the average originality score by non-architects. Compared to a non-architect, an architect is 1.93 times likelier to see a design variant as original. In 92.01% of the cases, architects’ originality score is higher than non-architects’. The methodology can be used to quantify and predict any subjective opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gifford, R., Hine, D.W., Muller-Clemm, W., Reynolds, D.J., Jr., Shaw, K.T.: Decoding modern architecture: a lens model approach for understanding the aesthetic differences of architects and laypersons. Environ. Behav. 32(2), 163–187 (2000)

    Article  Google Scholar 

  2. Llinares, C., Montanana, A., Navarro, E.: Differences in architects and nonarchitects’ perception of urban design: an application of kansei engineering techniques. Urban Stud. Res. 1, 1–13 (2011)

    Article  Google Scholar 

  3. Ghomeshi, M., Jusan, M.M.: Investigating different aesthetic preferences between architects and non-architects in residential facade designs. Indoor Built Environ. 22(6), 952–964 (2013)

    Article  Google Scholar 

  4. Jeffrey, D., Reynolds, G.: Planners, architects, the public, and aesthetics factor analysis of preferences for infill developments. J. Archit. Planning Res. 16(4), 271–288 (1999)

    Google Scholar 

  5. Montanana, A., Llinares, C., Navarro, E.: Architects and non-architects: differences in perception of property design. J. Housing Built Environ. 28(2), 273–291 (2013)

    Article  Google Scholar 

  6. Brown, G., Gifford, R.: Architects predict lay evaluations of large contemporary buildings: whose conceptual properties? J. Environ. Psychol. 21(1), 93–99 (2001)

    Article  Google Scholar 

  7. Moldovan, I., Moldovan, S.V., Nicoleta-Maria, I.: Iconic architecture: skyscrapers. In: Proceedings of 5th International Conference Civil Engineering - Science and Practice, pp. 1461–1468. Zabljak (2014)

    Google Scholar 

  8. Ray, P., Roy, S.: Skyscrapers: origin, history, evolution and future. J. Today’s Ideas Tomorrow’s Tech. 6(1), 9–20 (2018)

    Article  Google Scholar 

  9. Peet, G.: The origin of the skyscraper. CTBUH J. 1, 18–23 (2011)

    Google Scholar 

  10. Vollers, K.: The CAD-Tool 2.0 morphological scheme of non-orthogonal high-rises. CTBUH J. 3, 38–49 (2009)

    Google Scholar 

  11. Lagendijk, B., Pignetti, A., Vacilotto, S.: Case Study: Absolute World Towers, Mississauga. CTBUH J. 4, 12–17 (2012)

    Google Scholar 

  12. Ogburn, W., Thomas, D.: Are inventions inevitable? A note on social evolution. Polit. Sci. Quart. 37(1), 83–98 (1922)

    Article  Google Scholar 

  13. Lamb, D., Easton, S.M.: Multiple Discovery: The Pattern of Scientific Progress. Avebury, United Kingdom (1984)

    Google Scholar 

  14. Reinartz, W., Saffert, P.: Creativity in Advertising: When It Works and When It Doesn’t. Harvard Business Review, Brighton (2013)

    Google Scholar 

  15. Satir, S.: Innovation and originality in design. IJIRES 2(5), 372–376 (2015)

    Google Scholar 

  16. Shibayama, S., Wang, J.: Measuring originality in science. Scientometrics 122(1), 409–427 (2019)

    Article  Google Scholar 

  17. Adriaenssens, S., Block, P., Veenendaal, D., Williams, C.: Shell Structures for Architecture: Form Finding and Optimization. Routledge, London (2014)

    Book  Google Scholar 

  18. Tian, Z.C., Chen, W.Q., Tang, P., Wang, J.G., Shi, X.: Building energy optimization tools and their applicability in architectural conceptual design stage. Energy Procedia 78, 2572–2577 (2015)

    Article  Google Scholar 

  19. Sanatani, R.P.: A machine-learning driven design assistance framework for the affective analysis of spatial enclosures. In: Proceedings of CAADRIA 2020, pp. 741–750. Bangkok (2020)

    Google Scholar 

  20. Bruno, E.: Commentary/Integrating AI and deep learning within design practice processes: XKool technology. Ardeth. Innov. Happens 05, 220–226 (2019)

    Article  Google Scholar 

  21. Chaillou, S.: AI+ Architecture: Towards a New Approach. Master's Thesis, Harvard University (2019)

    Google Scholar 

  22. Koh, I.: Discrete sampling: there is no object or field … Just statistical digital patterns. In: Retsin, G. (ed.) Architectural Design, vol. 89, no. 2, pp. 102–109. Wiley, Hoboken (2019)

    Google Scholar 

  23. Ren, Y., Zheng, H.: The spire of AI - voxel-based 3D neural style transfer. In: Proceedings of CAADRIA 2020, pp. 619–628. Bangkok (2020)

    Google Scholar 

  24. Yousif, S., Bolojan, D.: Deep-performance - incorporating deep learning for automating building performance simulation in generative systems. In: Proceedings of CAADRIA 2021, pp. 151–160. Hong Kong (2021)

    Google Scholar 

  25. Verma, D., Jana, A., Ramamritham, K.: Quantifying urban surroundings using deep learning techniques: a new proposal. Urban Sci. 2(3), 78 (2018)

    Article  Google Scholar 

  26. Sekaran, U., Bougie, R.: Research Methods for Business. Wiley, Hoboken (2016)

    Google Scholar 

  27. Green, S.B.: How many subjects does it take to do a regression analysis. Multivariate Behav. Res. 26(3), 499–510 (1991)

    Article  Google Scholar 

  28. Clark, L.A., Watson, D.: Constructing validity: basic issues in objective scale development. Psychol. Assess. 7(3), 309–319 (1995)

    Article  Google Scholar 

  29. DeVellis, R.F.: Scale Development: Theory and Applications. Sage Publications, Newbury Park (2003)

    Google Scholar 

  30. Pignatiello, G.A., Martin, R.J., Hickman, R.L., Jr.: Decision fatigue: a conceptual analysis. J. Health Psychol. 25(1), 123–135 (2018)

    Article  Google Scholar 

  31. Revilla, M.A., Saris, W.E., Krosnick, J.A.: Choosing the number of categories in agree-disagree scales. Sociol. Methods Res. 43(1), 73–97 (2014)

    Article  MathSciNet  Google Scholar 

  32. Mousavirad, S.J., Ebrahimpour-Komleh, H.: Image segmentation as an important step in image-based digital technologies in smart cities: a new nature-based approach. In: Ismail, L., Zhang, L. (eds.) Information Innovation Technology in Smart Cities, pp. 75–89. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1741-4_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mondal, J. (2022). Quantifying Differences Between Architects’ and Non-architects’ Visual Perception of Originality of Tower Typology Using Deep Learning. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1280-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1279-5

  • Online ISBN: 978-981-19-1280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics