Skip to main content

Building Archetype Characterization Using K-Means Clustering in Urban Building Energy Models

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Design Imperatives: The Future is Now (CAAD Futures 2021)

Abstract

Population growth in cities negatively affects global climate problems regarding environmental impact and energy demand of building stock. Thus, buildings should be examined for energy efficiency by reaching acceptable internal thermal comfort levels to take precautions against climate disasters. Although building energy simulations (BES) are widely used to examine retrofitting processes, the computational cost of urban-scale simulations is high. The use of machine learning techniques can decrease the cost of the process for the applicability of quantitative simulation-based analyses with high accuracy. This study presents the implementation of the k-means clustering algorithm in an Urban Building Energy Modeling (UBEM) framework to reduce the total computational cost of the simulation process. Within the scope of the work, two comparative analyses are performed to test the feasibility of the k-means clustering algorithm for UBEM. First, the performance of the k-means clustering algorithm was tested by using the observations on the training data set with design parameters and performance objectives. The second analysis tests the prediction accuracy under different selection rates (5% and 10%) from the clusters partitioned by the k-means clustering algorithm. The predicted and simulation-based calculated results of the selected observations were comparatively analyzed. Analyses show that the k-means clustering algorithm can effectively build performance prediction with archetype characterization for UBEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksoezen, M., et al.: Building age as an indicator for energy consumption. Energy Build. 87, 74–86 (2015). https://doi.org/10.1016/j.enbuild.2014.10.074

    Article  Google Scholar 

  2. Arvai, K.: K-Means Clustering in Python: A Practical Guide – Real Python

    Google Scholar 

  3. ASHRAE: ASHRAE climatic design conditions 2009/2013/2017

    Google Scholar 

  4. ASHRAE: ASHRAE Standard 55-2004 – Thermal Comfort (2004). https://doi.org/10.1007/s11926-011-0203-9

  5. ASHRAE: ASHRAE Standard 90.1-2013 – Energy Standard For Buildings Except Low-rise Residential Buildings (2013)

    Google Scholar 

  6. World Bank: Cities and climate change: an urgent agenda. Urban development series knowledge papers. World Bank, Washington DC (2010)

    Google Scholar 

  7. Bedir, M.: Occupant behaviour and energy consumption in dwellings: an analysis of behavioral models and actual energy consumption in the Dutch housing stock (2017)

    Google Scholar 

  8. Chen, Y., et al.: Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis. Appl. Energy. 205, 323–335 (2017). https://doi.org/10.1016/j.apenergy.2017.07.128

    Article  Google Scholar 

  9. CIBSE: Guide a - Environmental design. The Chartered Institution of Building Services Engineers (2006)

    Google Scholar 

  10. Deb, C., Lee, S.E.: Determining key variables influencing energy consumption in office buildings through cluster analysis of pre- and post-retrofit building data. Energy Build. 159, 228–245 (2018). https://doi.org/10.1016/j.enbuild.2017.11.007

    Article  Google Scholar 

  11. El Gindi, S., Abdin, A.R., Hassan, A.: Building integrated Photovoltaic Retrofitting in office buildings. Energy Procedia 115, 239–252 (2017). https://doi.org/10.1016/j.egypro.2017.05.022

    Article  Google Scholar 

  12. Guerra-Santin, O.: Relationship between building technologies, energy performance and occupancy in domestic buildings. In: Keyson, D.V., Guerra-Santin, O., Lockton, D. (eds.) Living Labs, pp. 333–344. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-33527-8_26

    Chapter  Google Scholar 

  13. Hong, T., et al.: CityBES: a web-based platform to support city-scale building energy efficiency (2016)

    Google Scholar 

  14. Hong, T., et al.: Ten questions concerning occupant behavior in buildings: the big picture. Build. Environ. 114, 518–530 (2017). https://doi.org/10.1016/j.buildenv.2016.12.006

    Article  Google Scholar 

  15. Hsu, D.: Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data. Appl. Energy. 160, 153–163 (2015). https://doi.org/10.1016/j.apenergy.2015.08.126

    Article  Google Scholar 

  16. El Kontar, R., Rakha, T.: Profiling occupancy patterns to calibrate urban building energy models (UBEMs) using measured data clustering. Technol. Archit. Des. 2(2), 206–217 (2018). https://doi.org/10.1080/24751448.2018.1497369

    Article  Google Scholar 

  17. Kontokosta, C.E., et al.: A dynamic spatial-temporal model of urban carbon emissions for data-driven climate action by cities (2018)

    Google Scholar 

  18. Kontokosta, C.E.: Energy disclosure, market behavior, and the building data ecosystem. Ann. N. Y. Acad. Sci. 1295(1), 34–43 (2013). https://doi.org/10.1111/nyas.12163

    Article  Google Scholar 

  19. Kordas, O., et al.: Data-driven building archetypes for urban building energy modelling. Energy 181, 360–377 (2019). https://doi.org/10.1016/j.energy.2019.04.197

    Article  Google Scholar 

  20. KVKK, K.V.K.K.: Kişisel verilerin Korunması ve işlenmesi Politikası, Ankara (2018)

    Google Scholar 

  21. LBNL, L.B.N.L.: Input Output Reference. EnergyPlus (2009)

    Google Scholar 

  22. Ma, Z., Cooper, P., Daly, D., Ledo, L.: Existing building retrofits: methodology and state-of-the-art. Energy Build. 55, 889–902 (2012). https://doi.org/10.1016/j.enbuild.2012.08.018

    Article  Google Scholar 

  23. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  24. NVI, T.C.İ.B.N. ve V.İ.G.M.: Yerleşim Yeri Sorgulama / Adres Sorgulama / Adres Doğrulama - Vatandaş Sorgu İşlemleri

    Google Scholar 

  25. Østergård, T., et al.: A stochastic and holistic method to support decision-making in early building design. Proc. Build. Simul. Tian 2013, 1885–1892 (2015)

    Google Scholar 

  26. Østergård, T., et al.: Building simulations supporting decision making in early design - a review. Renew. Sustain. Energy Rev. 61, 187–201 (2016). https://doi.org/10.1016/j.rser.2016.03.045

    Article  Google Scholar 

  27. Reinhart, C.F., Davila, C.C.: Urban building energy modeling - a review of a nascent field. Build. Environ. 97, 196–202 (2016). https://doi.org/10.1016/j.buildenv.2015.12.001

    Article  Google Scholar 

  28. Pérez, M.G.R., Laprise, M., Rey, E.: Fostering sustainable urban renewal at the neighborhood scale with a spatial decision support system. Sustain. Cities Soc. 38, 440–451 (2018). https://doi.org/10.1016/j.scs.2017.12.038

    Article  Google Scholar 

  29. Roudsari, M.S., Pak, M.: Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In: Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, pp. 3128–3135 (2013)

    Google Scholar 

  30. Sokol, J., et al.: Validation of a Bayesian-based method for defining residential archetypes in urban building energy models. Energy Build. 134, 11–24 (2017). https://doi.org/10.1016/j.enbuild.2016.10.050

    Article  Google Scholar 

  31. Sola, A., et al.: Simulation tools to build urban-scale energy models: a review. Energies 11, 12 (2018). https://doi.org/10.3390/en11123269

    Article  Google Scholar 

  32. Swan, L.G., Ugursal, V.I.: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew. Sustain. Energy Rev. 13(8), 1819–1835 (2009). https://doi.org/10.1016/j.rser.2008.09.033

    Article  Google Scholar 

  33. Tardioli, G., Kerrigan, R., Oates, M., O’Donnell, J., Finn, D.P.: Identification of representative buildings and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive modelling approach. Build. Environ. 140, 90–106 (2018). https://doi.org/10.1016/j.buildenv.2018.05.035

    Article  Google Scholar 

  34. TSE: Ts 825: Binalarda Isı Yalıtım Kuralları (2008)

    Google Scholar 

  35. TÜİK: TÜRKİYE İSTATİSTİK KURUMU Turkish Statistical Institute (2010)

    Google Scholar 

  36. TUIK, T.S.I.: Employment status and participation rate (2020)

    Google Scholar 

  37. TUIK, T.S.I.: Indicators related with disability and old age, 2012, 2014, 2016, 2019 (2019)

    Google Scholar 

  38. Westermann, P., Evins, R.: Surrogate modelling for sustainable building design – a review. Energy Build. 198, 170–186 (2019). https://doi.org/10.1016/j.enbuild.2019.05.057

    Article  Google Scholar 

  39. Crawley, D.B., Pedersen, C.O., Lawrie, L.K., Winkelmann, F.C.: EnergyPlus: energy simulation program. ASHRAE J. 42, 49–56 (2000)

    Google Scholar 

  40. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015). https://doi.org/10.1007/s40745-015-0040-1

    Article  MathSciNet  Google Scholar 

  41. Yan, D., et al.: Occupant behavior modeling for building performance simulation: current state and future challenges. Energy Build. 107, 264–278 (2015). https://doi.org/10.1016/j.enbuild.2015.08.032

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Grant No. 120M997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orçun Koral İşeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

İşeri, O.K., Dino, İ.G. (2022). Building Archetype Characterization Using K-Means Clustering in Urban Building Energy Models. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol 1465. Springer, Singapore. https://doi.org/10.1007/978-981-19-1280-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1280-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1279-5

  • Online ISBN: 978-981-19-1280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics